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Solving nonlinear equations

&

Have: 9:&—3 IR ngﬁm

Want: % sude thar ‘Q[X)°:\,

Rewrite the problem so that we only need 3(¥J=0~ (i.e. no explicit right-hand side)
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What if we know that Q is continuous ané QG\) : 'ﬂu:) <0" )
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Can we use this "bracket" to track down the zero?




Newton's method

Suppose X, is our current guess of the zero.
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Idea: Build a solvable approximate version of f using %(mﬂ ‘? (Kg)

Find the zero of the approximate version.

This is called Newton's method.




Name some downsides of Newton's method.
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\—/How else could we find a line approximating a function?
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Estimate the slope of the approximating line:

Lie 4 fl)

v
(ZW )(uv)(u,,

Now use this estimate in Newton's method:
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Solving systems of nonlinear equations

{h‘la?

Want to solve é%@% 0 g;(]Z" —q'@“

Let's try to carry over our 1-dimensional ideas.

Let's first get an idea of what behavior can occur.

Based on the demo: Does bisection stand a chance?

Let's try Newton's method then. What's the linear approximation ofﬁ ?
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OK, now solve that for h.
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Let's do an example of that:

[<r -2\,

fisl
\xzf‘(tf—‘f =),
(33, %
_9.21. ?ﬁ; } N ?\l
O aj /J = v

What are the downsides of this method?
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So how about (an n-dimensional analog of) the secant method?
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So carrying over the secant method to n dimensions is not easy.

It's possible, but beyond the scope of our class.

Here are two starting points to search:

- Broyden's method

- Secant updating methods

Here's one more idea: If we could figure out where the linear approximation

in Newton is 'trustworthy’, would that buy us anything?
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D Optimization
_/

Let's try to weaken the requirement Q&)e 5 . ( ;/{2"' %[Q“)

—

Create a problem statement for "optimization".

What if I'm interested in the largest possible value of a function g instead?




What could go wrong?

How can we tell if we've got a (local) minimum in 1D? Remember calculus!

And in n dimensions?




Let's steal the idea from Newton's method for equation solving.

Build a simple version of f and minimize that. Let's try in 1D first.

\ -g,(x) / d

Does a linear approximation (a line) help at all?
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Now minimize that.




Does that look at all familiar?




