D Optimization
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Create a problem statement for "optimization".
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Let's steal the idea from Newton's method for equation solving.

Build a simple version of f and minimize that. Let's try in 1D first.
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Does that look at all familiar?
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Golden Section Search

Let's try to create an analog to 'bisection’, with a type of bracket.
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Is one middle point in the bracket good enough? l\I —
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Next: what condition are we going to/maintain throughout?

In particular: Is "the minimum i;Ahe bracket" feasible?

No.

What does it mean for f to be 'unimodal'?
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Reality check: Do we typically know that a function is unimodal in a bracket?
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So how do we maintain unimodality in each bracket?
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Where do we put the midpoints?




What's the convergence order of Golden Section Search?
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Steepest Descent

What do we do in n dimensions?
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What does that mean mathematically?
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And how far do we go?
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What's the convergence order in the example in the demo?
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Can we do better by using information from the second derivative?
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Newton's method in n dimensions
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Step 1: Write down a quadratic approximation ﬂ to fat ¥,
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Do an example:
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What if we don't even have one derivative, let alone two?!




Constrained Optimization

Modify the problem statement of optimization to accommodate a constraint.

What does a solution/minimum x*  of this problem look like?

|.e. what are some necessary conditions on x" ?
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Miracle: Reduce constrained to un-constrained optimization

Define a new function of more unknowns
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What are the necessary conditions for an un-constrained minimum of 2

Using Newton's method on 3

gets a new name:







