{"metadata": {"signature": "sha256:763597260d75780217fff87e5490752119aac9476a4381b68b8a94fcffaa466f", "name": ""}, "worksheets": [{"metadata": {}, "cells": [{"metadata": {}, "source": ["# Matrices to transform geometry"], "cell_type": "markdown"}, {"prompt_number": 7, "metadata": {}, "cell_type": "code", "outputs": [], "language": "python", "input": ["import numpy as np\n", "import matplotlib.pyplot as pt"], "collapsed": false}, {"prompt_number": 17, "metadata": {}, "cell_type": "code", "outputs": [], "language": "python", "input": ["def parse_squiggle(s):\n", " numbers = [float(num) for num in s.split()]\n", " a = np.array(numbers)\n", " return a.reshape(-1, 2).T\n", "\n", "stickman = parse_squiggle(\"251.43 286.38 250.93 286.27 250.55 286.04 250.67 286.61 250.93 286.95 251.31 287.29 251.94 287.63 252.44 287.86 253.33 288.09 254.08 288.32 255.09 288.54 256.11 288.66 257.24 288.77 258.76 289.11 260.02 289.23 261.54 289.45 262.67 289.57 263.94 289.57 264.82 289.68 265.71 289.68 266.59 289.79 267.09 289.79 267.60 289.91 268.23 290.13 268.61 290.36 269.12 290.70 269.62 290.93 270.13 291.04 270.76 291.04 271.26 291.04 271.64 291.04 271.26 291.04 271.39 290.70 271.64 290.13 272.02 289.34 272.40 288.43 273.16 287.07 273.79 286.04 274.42 284.68 275.31 282.97 275.94 281.04 276.69 278.77 277.58 276.38 278.21 274.11 279.09 272.17 279.85 270.81 280.23 269.56 280.99 268.76 281.49 267.85 282.00 266.83 282.63 265.69 283.01 264.44 283.52 263.08 284.27 261.60 285.28 260.24 286.04 258.87 286.67 257.96 287.05 257.39 287.18 257.17 287.56 257.17 287.94 257.62 288.44 258.08 288.82 258.99 289.20 260.35 289.83 261.71 290.08 263.31 290.46 264.67 290.97 265.92 291.60 267.17 292.11 268.42 292.61 269.67 293.24 271.15 293.62 272.63 294.13 274.11 294.63 275.36 294.88 276.61 295.39 277.74 295.89 278.65 296.27 279.56 296.65 280.24 296.91 280.81 297.16 281.38 297.66 282.18 298.17 282.86 298.55 283.43 298.93 283.88 299.05 284.22 299.31 284.56 299.56 285.13 299.94 285.59 300.06 285.93 300.32 286.27 300.57 286.61 300.82 286.95 301.07 287.29 301.33 287.63 301.33 287.97 301.45 288.43 301.58 288.77 301.83 289.23 302.08 289.57 302.59 289.91 302.97 290.13 303.22 290.48 303.47 290.93 303.73 291.39 304.23 291.73 304.61 292.18 304.74 292.64 305.12 293.09 305.49 293.55 305.87 293.77 306.25 294.00 306.63 294.23 306.51 293.89 307.01 293.66 307.39 293.55 307.89 293.43 308.53 293.32 309.03 293.20 309.54 292.98 310.29 292.75 311.18 292.41 312.32 292.18 313.45 291.95 314.59 291.73 315.73 291.61 316.99 291.39 318.38 291.27 319.52 291.04 320.78 290.93 321.79 290.82 322.80 290.70 323.81 290.48 324.44 290.48 325.20 290.36 325.58 290.25 326.21 290.13 326.72 290.02 327.35 289.91 327.85 289.91 328.23 289.79 328.48 289.45 328.48 288.77 328.48 287.97 328.48 286.84 328.48 285.25 328.36 283.88 328.23 282.29 327.73 280.47 327.35 278.31 326.59 276.15 326.08 273.99 325.45 271.95 324.95 270.13 324.44 268.42 324.06 266.94 323.68 265.47 323.31 263.99 322.93 262.62 322.67 261.37 322.42 260.35 322.17 259.21 321.92 258.42 321.66 257.39 321.41 256.48 321.16 255.69 321.03 254.89 320.91 253.98 320.78 253.30 320.53 252.28 320.40 251.71 320.27 250.80 320.02 250.12 319.89 249.44 319.77 248.75 319.52 248.19 319.39 247.62 319.26 247.28 319.14 246.71 319.01 246.25 318.88 245.80 318.76 245.46 318.63 245.12 318.51 244.21 318.51 243.75 318.38 243.18 318.25 242.50 318.00 242.05 317.75 241.36 317.62 240.68 317.62 240.00 317.49 239.66 317.37 239.32 317.24 238.98 317.24 238.64 317.12 238.18 316.99 237.73 316.99 237.16 316.86 236.59 316.74 236.13 316.61 235.34 316.48 234.77 316.23 234.09 316.11 233.41 315.85 232.84 315.73 232.38 315.60 231.93 315.47 231.59 315.09 230.91 314.84 230.56 314.72 230.22 314.46 229.65 314.21 229.43 313.96 228.97 313.71 228.29 313.33 227.61 313.07 226.93 312.69 226.36 312.57 226.02 312.32 225.56 312.06 224.99 312.06 224.43 311.81 223.97 311.68 223.52 311.56 223.17 311.43 222.83 311.31 222.27 311.18 221.92 311.18 221.36 311.05 220.90 310.93 220.22 310.80 219.65 310.67 219.08 310.55 218.40 310.42 217.72 310.17 217.15 310.04 216.35 309.79 215.67 309.66 215.44 309.54 215.10 309.54 214.76 309.54 214.42 309.16 214.42 309.16 213.97 309.54 213.97 310.17 213.97 310.67 213.97 311.18 214.19 311.68 214.42 312.06 214.53 312.44 214.65 312.95 214.76 313.45 214.76 313.96 214.88 314.46 215.10 314.97 215.22 315.35 215.44 315.98 215.67 316.61 215.67 317.49 216.01 318.25 216.13 318.88 216.24 319.52 216.35 320.02 216.47 320.53 216.69 321.03 216.81 321.41 216.92 321.79 217.04 322.42 217.15 322.80 217.38 323.18 217.38 323.56 217.38 324.06 217.38 324.57 217.38 325.07 217.49 325.58 217.49 326.08 217.72 326.59 217.83 327.09 217.95 327.60 218.06 327.98 218.06 328.48 218.40 329.24 218.63 330.25 218.85 331.14 219.08 331.77 219.08 332.27 219.08 332.78 219.20 333.16 219.20 333.54 219.20 333.92 219.20 334.55 219.42 335.05 219.42 335.81 219.54 336.57 219.54 337.33 219.54 337.83 219.54 338.46 219.54 339.09 219.65 339.47 219.76 340.11 219.76 340.48 219.76 340.86 219.76 341.24 219.76 341.62 219.76 342.00 219.76 342.63 219.88 343.26 219.99 343.77 220.11 344.27 220.22 344.65 220.33 345.03 220.33 345.54 220.45 345.79 220.11 345.92 219.65 346.04 218.97 346.29 218.06 346.42 216.81 346.80 215.90 346.93 214.76 347.18 213.63 347.31 212.26 347.43 211.24 347.56 210.10 347.68 208.96 347.81 207.94 347.94 206.69 347.94 205.44 348.06 204.42 348.06 203.39 348.19 202.37 348.32 201.57 348.32 200.67 348.44 200.10 348.44 199.53 348.44 199.19 348.32 198.85 348.32 198.51 348.32 198.16 348.32 197.82 348.32 197.25 348.32 196.57 348.32 196.23 348.32 195.78 348.32 195.44 347.94 195.66 347.43 195.66 347.05 195.66 346.55 195.55 345.66 195.55 344.78 195.55 343.77 195.44 342.76 195.32 341.75 195.09 340.61 194.87 339.35 194.53 338.21 194.30 336.82 193.96 335.43 193.73 334.17 193.39 332.91 193.05 331.64 192.82 330.25 192.59 328.99 192.25 327.47 192.03 326.21 191.68 324.82 191.34 323.56 190.89 322.29 190.43 321.03 189.98 319.77 189.64 318.63 189.41 317.49 189.18 316.36 188.96 315.35 188.73 314.72 188.50 313.96 188.27 313.58 188.16 313.20 188.05 312.69 187.93 312.06 187.82 311.56 187.82 311.18 187.71 310.67 187.59 310.29 187.48 309.79 187.48 309.41 187.36 309.03 187.36 308.40 187.36 307.89 187.25 307.39 187.14 306.76 187.14 306.25 187.02 305.87 186.91 305.49 186.91 305.12 186.68 304.74 186.68 304.36 186.45 304.36 186.80 304.74 186.80 305.37 186.91 306.00 187.02 306.51 187.25 307.26 187.48 308.02 187.71 308.78 187.93 309.41 188.05 309.92 188.16 310.67 188.27 311.18 188.27 311.81 188.39 312.32 188.39 312.95 188.39 313.45 188.39 313.96 188.39 314.59 188.27 315.22 187.93 315.60 187.71 315.98 187.59 316.36 187.36 316.74 187.25 317.37 186.68 317.75 186.45 318.13 186.11 318.63 185.55 319.01 185.20 319.39 184.75 319.77 184.18 320.27 183.61 320.40 183.16 320.91 182.59 321.28 182.02 321.54 181.23 321.79 180.54 321.92 179.86 322.04 178.95 322.17 178.16 322.29 177.25 322.42 176.34 322.55 175.43 322.67 174.52 322.67 173.49 322.80 172.59 322.80 171.79 322.80 171.11 322.67 170.43 322.67 169.52 322.55 168.72 322.29 167.70 321.92 166.67 321.41 165.76 321.03 164.51 320.53 163.60 320.15 162.69 319.77 161.79 319.26 160.99 318.63 159.97 318.00 159.17 317.49 158.26 316.99 157.24 316.36 156.33 315.85 155.42 314.97 154.28 314.21 153.49 313.58 152.58 312.69 151.78 311.81 150.76 310.80 149.73 309.54 148.71 308.65 147.69 307.64 146.78 306.63 145.98 305.75 145.19 304.74 144.51 303.60 143.94 302.46 143.14 301.33 142.57 299.94 141.89 298.67 141.09 297.41 140.41 296.02 139.62 294.63 138.93 293.12 138.37 291.35 137.80 289.45 137.34 287.43 136.89 285.54 136.43 283.89 136.09 282.38 135.87 280.99 135.52 279.98 135.30 278.84 135.18 277.83 135.07 276.95 134.96 275.81 134.96 274.93 134.96 273.79 134.96 272.65 134.96 271.52 135.07 270.38 135.30 269.37 135.64 268.36 135.98 267.35 136.55 266.72 137.00 265.71 137.46 265.07 137.91 264.44 138.25 263.68 138.71 263.05 139.16 262.17 139.84 261.54 140.41 260.78 140.87 260.15 141.44 259.64 142.00 259.14 142.57 258.63 143.25 258.00 143.82 257.49 144.62 256.99 145.53 256.48 146.44 255.98 147.35 255.47 148.26 255.09 148.94 254.59 149.73 254.34 150.76 253.96 151.55 253.58 152.69 253.33 153.83 253.07 154.74 252.95 155.76 252.95 156.90 252.82 158.03 252.82 159.40 252.69 160.53 252.69 161.79 252.69 162.81 252.69 163.83 252.82 164.85 252.95 165.88 253.07 166.79 253.20 167.70 253.45 168.49 253.71 169.29 253.96 170.08 254.21 170.88 254.34 171.68 254.46 172.36 254.59 172.93 254.72 173.49 254.84 174.29 254.97 174.97 255.09 175.65 255.22 176.45 255.47 177.13 255.73 177.93 255.98 178.61 256.36 179.41 256.61 179.97 256.99 180.54 257.37 181.23 257.75 181.79 258.00 182.48 258.25 182.93 258.63 183.61 258.88 183.95 259.26 184.41 259.64 184.75 260.40 184.98 260.91 185.20 261.54 185.43 262.17 185.66 262.55 186.00 263.05 186.23 263.68 186.57 264.32 186.80 265.07 187.02 265.83 187.36 266.59 187.48 267.35 187.59 268.11 187.71 268.86 187.71 269.75 187.71 270.88 187.93 271.77 188.05 272.78 188.16 273.79 188.27 274.80 188.27 275.81 188.27 276.44 188.27 276.82 188.39 277.20 188.50 277.58 188.61 277.71 188.96 277.33 188.84 276.95 188.84 276.44 188.84 275.94 188.73 275.56 188.61 275.18 188.61 274.80 188.61 274.29 188.61 273.66 188.61 273.28 188.61 272.53 188.73 271.89 188.73 271.14 188.84 270.25 188.84 269.37 189.07 268.48 189.30 267.47 189.52 266.59 189.87 265.96 189.98 265.07 190.21 264.44 190.32 263.68 190.43 262.93 190.55 262.17 190.55 261.28 190.55 260.65 190.66 259.89 190.89 259.26 191.00 258.51 191.12 257.62 191.23 256.74 191.46 255.98 191.57 255.35 191.91 254.84 192.14 254.34 192.37 253.96 192.48 253.33 192.71 252.82 192.82 252.32 193.05 251.94 193.05 251.43 193.28 250.80 193.39 250.29 193.62 249.54 193.96 249.03 194.30 248.40 194.53 247.77 194.75 247.26 194.87 246.63 195.21 246.00 195.55 245.62 195.89 245.24 196.23 244.86 196.46 244.48 196.57 244.11 196.80 243.60 197.14 242.97 197.60 242.59 197.82 242.08 197.94 241.71 198.05 241.20 198.28 240.69 198.62 240.19 198.96 239.81 199.19 239.43 199.41 238.93 199.53 238.55 199.76 237.92 199.87 237.54 199.98 237.16 199.98 236.78 200.32 236.53 200.67 236.53 201.23 236.65 201.80 236.78 202.48 237.03 202.83 237.28 203.51 237.79 204.42 238.29 205.21 238.67 206.35 239.18 207.26 239.43 208.05 239.81 208.74 240.19 209.31 240.57 209.99 241.07 210.67 241.45 211.35 241.83 212.15 242.34 212.83 242.46 213.17 242.72 213.63 242.97 213.97 243.22 214.65 243.35 214.99 243.47 215.33 243.60 215.90 243.73 216.47 243.85 216.81 244.11 217.26 244.36 217.49 244.36 217.95 244.61 218.40 244.86 218.74 244.99 219.08 245.12 219.42 245.49 219.54 245.87 219.54 246.38 219.54 246.76 219.54 247.26 219.54 247.77 219.54 248.53 219.54 249.03 219.65 249.79 219.65 250.55 219.54 251.31 219.54 252.06 219.54 252.82 219.54 253.45 219.42 254.21 219.42 254.97 219.20 255.60 219.20 256.36 219.08 256.86 218.85 257.37 218.74 257.75 218.74 258.38 218.63 258.88 218.51 259.64 218.40 260.27 218.29 260.91 218.17 261.41 218.06 261.79 217.95 262.17 217.95 262.80 217.83 263.31 217.72 263.94 217.49 264.44 217.38 264.82 217.38 265.33 217.26 265.96 217.04 266.46 217.04 267.22 216.92 267.85 216.81 268.36 216.69 269.24 216.58 269.62 216.47 270.25 216.35 270.88 216.24 271.39 216.13 271.89 216.13 272.53 216.01 273.03 216.01 273.79 216.01 274.42 216.01 275.31 215.90 275.94 215.90 276.44 215.67 276.95 215.67 277.58 215.67 277.96 215.56 278.46 215.44 278.97 215.44 279.73 215.56 280.48 215.67 281.24 215.67 281.87 215.67 282.38 215.67 282.76 215.67 283.39 215.67 284.02 215.67 284.53 215.67 285.16 215.67 285.54 215.67 286.04 215.90 286.29 216.24 285.92 216.58 285.66 217.04 285.41 217.72 284.78 218.29 284.15 219.08 283.52 219.99 282.63 220.56 282.00 221.58 281.12 222.27 280.36 223.06 279.98 223.97 279.47 224.43 279.09 224.99 278.46 225.56 277.83 226.02 277.33 226.81 276.82 227.49 276.57 228.29 276.32 228.86 275.94 229.31 275.56 229.65 275.18 230.00 274.67 230.56 274.42 231.02 274.04 231.36 273.79 231.93 273.54 232.38 273.28 233.07 272.91 233.97 272.27 234.66 271.77 235.45 271.39 236.02 271.01 236.48 270.88 237.04 270.63 237.50 270.51 238.07 270.25 238.75 270.00 239.20 269.75 239.77 269.62 240.00 269.49 240.68 269.37 241.25 269.24 241.71 268.99 242.39 268.74 242.96 268.48 243.75 268.11 244.55 267.85 245.23 267.47 246.25 267.22 246.93 266.97 247.96 266.59 248.64 266.34 249.21 266.08 249.78 265.83 250.12 265.58 250.46 265.45 251.03 265.20 251.37 264.95 251.71 264.69 252.05 264.57 252.51 264.32 252.85 264.06 253.30 263.94 253.76 263.56 254.32 263.18 254.78 262.93 255.12 262.55 255.46 262.17 255.69 261.92 256.14 261.66 256.60 261.54 257.05 261.28 257.62 260.91 258.08 260.53 258.64 260.27 259.10 259.89 259.44 259.64 259.89 259.39 260.24 259.14 260.58 258.88 260.92 258.76 261.49 258.38 262.28 258.13 262.62 257.87 263.31 257.62 263.76 257.37 264.33 257.24 264.90 256.99 265.47 256.74 266.03 256.48 266.60 256.23 267.17 256.11 267.51 255.85 267.85 255.73 268.31 255.47 268.76 255.22 269.22 255.09 269.90 254.84 270.35 254.59 270.92 254.34 271.38 254.08 271.83 253.96 272.29 253.83 272.74 253.58 273.08 253.33 273.88 253.33 274.33 253.20 274.79 253.20 275.36 252.95 276.04 252.69 276.38 252.57 276.95 252.44 277.40 252.32 277.86 252.32 278.31 252.19 278.77 252.06 279.22 251.94 279.56 251.81 280.02 251.56 280.59 251.43 281.27 251.43 281.61 251.31 281.84 251.18 282.29 251.05 282.75 251.05 283.09 250.80 283.54 250.67 283.88 250.67 284.22 250.55 284.68 250.55 285.13 250.42 285.59 250.29 285.93 250.29 286.27 250.29 286.61 250.42 286.04 250.93 284.45\")\n", "stickman[1] *= -1"], "collapsed": false}, {"prompt_number": 15, "metadata": {}, "cell_type": "code", "outputs": [{"prompt_number": 15, "metadata": {}, "output_type": "pyout", "text": ["[]"]}, {"metadata": {}, "text": [""], "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD/CAYAAAD2Qb01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VNXWx/EvTUGKCgrSBEVFEJDeS7wUL3jtiqjXFxF7\nw8IVAS8B6wUEREUEsSJFEaWIiLTQe++9g0gNLUBCzvvHb2JiCBImM3POzKzP88yTmZNhZjFJ1tln\nl7XBGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxoSZS4GxQBwwG6jtO34dMBGYBvwKXO47HgvMA2YB\nNUIZqDHGmMDoCrzou38DsMh3fwpQ03f/HqAOUBWY7DtWEpgfmhCNMcacS3Y//k0fYKDvfi4gAcgN\nXAncAUxFSX8eUB+Y4HvuDiAnUCgL8RpjjMmi8yX+tsCKdLfrgJPAVcBgoCNK5jehrp5bUDdPayA/\ncCTN6x1FXUXGGGPCTEVgJXCr73EeID7N9+8C+gEvAP9Jc3wxUDAUARpjjAmc8sBalPzTWoC6dkDd\nQc+gPv5JQDbgamBpRi9YpkwZB7Cb3exmN7td2G0jITIK2Iz68qcCP/mOVwJmAHOAIag/HzSrZy4a\n2K17jtd0wkFsbKzbIWRKOMQZDjE6jsUZaBZnYKHkf8Fynv8pZ7nrHMeXAw0yON7NdzPGGOMB/szq\nMcYYE8Ys8V+AmJgYt0PIlHCIMxxiBIsz0CxOb8jmdgA+vu4qY4wxmZUtWzbwI49bi98YY6KMJX5j\njIky/szqMcaEGceBw4dh61bdtmzR19274fffYe9eOHEC8uVLfe7p03DmDCQn63bJJXDZZXDppam3\n9I9TjpUsCRUr6t8Y77E+fmMikOPApk0wdSpMmQJxcXD8OFxzDZQura+lSkGJElCkiG558+o5oOSd\nOzdkz65btmz6Xnz8X2+HD2f8eOtWWLMGrr4aKleGatWgSRO4+Wa9ngkMf/v4LfEbEyH++ENJfuJE\nmDQJEhPhH//Q7ZZblPCzhfAvPjER1q2DpUth3jzFdegQ3HsvPPQQ1KsX2ngikSV+Y6LMiRMwY4aS\n/MSJamU3aqSWdZMmcOON3kusmzfD8OEweDDkygUvvqiTgHUJ+ccSvzFR4MQJGDQIRo2C+fOhShVo\n2lSJvkYNJdNw4DgweTJ8+CHMmQNt28Kzz6pryGSeJX5jItiSJTByJHz+OdStC489Bg0bQv78bkeW\ndZs2wccfwzffqEvqxRehQQPvXa14kSV+YyJMUhIMGwYffQT79kHLlvDww1CpktuRBcfRo0r+H36o\nweYePaB27fP/u2hmid+YCOE46srp2BGKFoVXX4XmzSFHDrcjC40zZ3QC6NIFataEd9+FsmXdjsqb\nLPEbEwFmzoTXXlNffvfu0KxZ9HZ5JCSo9f/++3DfffDee5pmalJZyQZjwtjBg3DPPfDvf2uQc/Fi\nuPXW6E36AHnyQIcOmhKaLZu6uCZPdjuqyGCJ3xiXLV4MtWppnv3atUr+tsgpVcGC8Mkn8Nln0Lo1\ntGunKyLjP/v1MsYliYnqx2/eHLp1g969tVrWZOzWW2H5cti/H8qXhxEjNB5iLpw/F5KXAt8C+YGL\ngFfQ1or1gF5oK7BJwH99z48FWgBJwEtob970rI/fRJUDBzRLJ1cu+PprzWIxmTdtmlr+BQvCwIFw\n3XVuR+SOUPbxvwxMBGKAR4F+vuO9fI/r+L5XAW223hCoBbRK81xjotbo0apZU60ajBtnSd8fjRrB\nokVw++2a8vn++5oNZDLHn8TfBxjou58LSPDdTwAKoauA3KiFXx+Y4Pv+DlQNtJC/wRoTzhIT4fnn\noX17GDJE89SjZYpmMOTIAS+/rDpA48bpZLBpk9tRhYfzJf62wIp0t+uAk8BVwGCgo++57wM/A6uB\n7cA61B10JM3rHUVdRcZElf37NTVzyxZYuFBJygRGmTKa7XPffWr9Dxxoff/n4+9ksYrAMOBV1KLP\nA6xE/fy/A92BfcAp1Prv6ft3i4EmwMF0r+fExsb++SAmJibi97w00WP5crjrLvXpv/OOtfKDafVq\neOQRdZ99/rkWwEWSuLg44uLi/nzcrVs3CNECrvLAj8D96AoAIC+wBvXrH0HjAIV8z+sBNAVKAmOA\nyhm8pg3umog0ZQo88AD07asqlCb4EhPh7bfh009V7qJlS7cjCp5QrtwdBVQCtvkeHwbuBh5ECf8E\ncAgN9MajWT3NUbfSS8DsDF7TEr+JOAsXQosW8P33YBewoTd/vlr/1aqpCFzBgm5HFHhWssEYD1m/\nXv34/furm8e448QJrZX48UcVvKtf3+2IAssSvzEesWuXEswbb6jOvHHf+PFa9fv22/Dkk25HEziW\n+I3xgKNHoU4ddTF06OB2NCatDRvgzju1aU2fPpExyG6J3xgP6NQJtm2Db7+N7gJrXhUfD3ffrSqf\nQ4aoEFw4s8RvjMu2b9dWiMuWQYkSbkdjzuXUKRXCAw28h/MJ2soyG+OyTp3guecs6XvdxRdrs/cd\nO9TnH428cq6zFr8Ja7Nnw/33q3Z8vnxuR2MyY88e7fD10UfhO/PKWvzGuGTvXmjVCvr1s6QfTooW\n1TTPJ56AlSvdjia0LPEbkwWnT6tGTJs24dtqjGY1asAHH2i2z4EDbkcTOtbVY0wWtG8Pa9bA2LG2\na1Y4+89/Un+O4TTYa109xoTYN9+oq+Drry3ph7t33tHCuy+/dDuS0PDKuc1a/CaszJypzdHj4rQN\noAl/K1fCP/4Bo0ZB3bpuR5M51uI3JkS2btUMnm++saQfSSpU0M/0nns0OyuSWYvfmAt0//1QuTJ0\n7ux2JCYYvvhCXT+zZ3t/W0xbuWtMCGzZopkgW7fa1M1I9vrrsHEj/PCD25H8PUv8xoRAu3aq7/K/\n/7kdiQmmhAQoVw4GDIBbb3U7mnOzxG9MkB0+DNdeCytWQPHibkdjgi0uTrunTZkCN93kdjQZs8Fd\nY4Lshx9U0teSfnSIiYHu3bUqOzHR7WgCy5/EnxcYDUwDJgLFfMdrA3OBmUCXNM+PBeYBs4Aafkdq\njMvWr1f1TRM9WrdW0b1PP3U7ksDyJ/E/DiwAGgHfAq/5jn+K9t2tD9RCm6pXBRr6HrcC+mUxXmNc\ns3Kldy/5TXBky6YNdQYNgkjqjc7px7/pS+oJoxTaWD0/cBGwxXd8AtAEOAX85ju2w/d+hYAoqoph\nIkFSEqxaBddc43YkJtQaNoTjx7Vor0EDt6MJjPO1+NsCK9LdqgHJwGTgOWAUcClwJM2/O+o7VgCI\nz+C4MWFlxgy48kqoWNHtSEyoZc8Or70GPXu6HUngnK/F/7nvlpHGQFlgHFAFtfpTFAAOA6fTHc/v\nO36Wrl27/nk/JiaGmJiY84RmTOgsXAj16rkdhXHLQw8p+e/bpwaAW+Li4oiLi8vy6/gznbMjsBMY\nDJQAJgE3AkuAe1F3z89AV+AM0ANoCpQExqC+//RsOmcYOnYMYmNh3jw4eRIaNYI77tBm4xdd5HZ0\ngfXmmyrBHK07Nhm4917t15uybaMX+Dud058+/s+Br4HHgBxAG9/xp4EhvmMT0AAwwAxgDupWetaP\n9zMelJgIt90GpUopGebKBZMmwSuvaM/ZIkVUxyZPHsidW1/z59fza9SAqlUhb17IkcPt/0nm3HAD\n9O0LHTsqbhN9KlRQ6eZIYAu4jF/++19YtAh+/vnsksSOA5s365aQACdO6OuRIyp5MG8eLF+uY9mz\naw/Uiy7SjkiXX67NsE+f1smiSBEoW1YnkXLldLvUhVGixER4/HFYvVo126+6KvQxGHfNmAFt2yr5\ne6XBYit3Tcg4jhLxF1+oWycrr5OUlJrod+yAo0dTTwQJCdoXde1a/bGtXq37+fLp6uHKK3UFcc01\nmm1RvTpccUXwNtJwHHX5fP01/PIL3HhjcN7HeJPjQK1aKs53551uRyOW+E3ILF+u0rUbNoR+t6Lk\nZJ0Mjh2DP/6Abdtg0yYtq1++XIm/Vi3NvqlRQyeDAgUCG8NXX6nLZ/NmXZWY6NGvHyxeDJ+fa8pL\niFniNyHz3XcqXzBihNuR/JXjqPtp1SqNM8yfD0uXwmWXqcxC8eJahVm/PjRrpuP+euQRze3+7juN\nb5josHKl9lbeuNHtSMQSvwmZ119XsnvrLbcjOb+kJG2pt3u3vm7bpquDGTNUfqFFC90qVLiwq5fT\npzXDo0ABGDwYcvozTcKEnaQkDe7Hx2vSgtss8ZuQOHhQg60zZ+pruEpIgKlT1Vc/bhycOQNNm2qV\nZsOGmVuhm5CgKX4nT+oKqGDB4Mdt3FexIgwcmLXxrUCx6pwmJH7+WYkxnJM+qG++RQv4+GP11U+Y\noCmmv/yiP+jrr9cahT17/v41xo6Fm29W15FXLv9NcN1/v7r4wpklfnNBxo1T4o8k2bJpmuhzz+kP\nes8efd2/X0XZHn5Y/++TJ8/+tzlyQO/eWtlZu7YGfY8dC/3/wYRO6dK68g1nlvhNpu3YAZMnaz57\nJMuWTa3/fv10NVCzpuqyFymifv0PP9TMjjNnUp//yiuaVbRrl6Z5fvqpBn9N5LnkEm3KE86sj99k\n2tix8MknMH6825G4Y/9++PVXmD5dYxy7dqmVX7++1hHUrKmkMGeOThQzZ8Jjj0H79lC4sNvRm0DZ\nvl1Thv+uGzBUrI/fBN22bXD11W5H4Z4rrlCdloEDtZhs0yZ49lmtSH79dS0oq10bfvwR2rTRCTIh\nQTOGPvkk9QrBhLcrr4RDh9yOImusxW8yrX17/dJ36OB2JN504oTWDsyYodb+3LkaJG7USDOIsmWD\nDz6InJru0eroUV3BnTgR+gWM6YWySJuJUvHx2mzcZOySS7RPa0pF8aQkmDhRYwUbNmjQt2FDTRvt\n1ctq+4erVas06O920s8K6+oxmeI4MG2aujJM5uTMCc2bawrsrl3Qv78WjU2cCJUq6TZjRmRt6RcN\nDh1St184s8RvMuXIEa1+tc3G/VOgADz9tGYD7dwJ7drBihW6AsieXfV/MpouarxnyZLwX8diid9k\nyvbtWpkazpe3XlG8uPr6ExJgwAAda9NGVUdnzHA3NnN+kybBP//pdhRZY4nfZMrKlZrCZgInd254\n8kktBnrhBc36adhQXWrGu5Yt0zqPcGaJ32TKkCHQpInbUUSmyy/XorCDB+E//9FMIONdOXOG/7iM\nPxfueYGhwGVoM/XWwG60+fpbQCLwB/B/QAIQC7QAkoCXSN2SMS2bzulh8+ap/v6mTd6oSGiMWxxH\nmwDt3h34fR78EcoFXI+j5N0I+BZ4zXe8H3Cn7/gG3/OqAg2BWkAr33NMGDl5Uv3PvXtb0jfm0CG1\n+L2Q9LPCn3n8fUk9YZQCUtawNQL2+e7nAk4C9YDffMd2+N6vEHDAn2BN6A0ZohLFLVu6HYkx7luz\nJnMlu73ufC3+tsCKdLdqQDIwGXgOGOV77l7f13vQSeAboAAQn+b1jgIubJVt/DVsmBYa2WweY7Tf\n8n33uR1F1p2vxf+575aRxkBZYBxwne/Yyyjx/xM4BRwB8qf5N/mBDOvade3a9c/7MTExxKQsfzSu\n2bsXFi6EMWPcjsQY9x0/ru1GV61yL4a4uDji4uKy/Dr+tOM6AjuBwUAJYBJwI9AZ9ek/jLp58D3u\nATQFSgJjgMoZvKYN7nrQiBGaZz5pktuRGOO+SZOga1fVYfKKUA7ufg48BExFs3vaAEWALkBRYLzv\ne08Bi4EZwBzgB+BZP97PuKRyZdWjr18fvv8eEhPdjsgY93zxhUpwRAKv9Nxai9+jkpJg9GjNM9+8\nWWWIn3gi/GuVGHMhFi2Cu+6CtWu12bpXWD1+ExQ5c2pD8WnT1Ne/YYMWGHXrFv67EBmTWVOm6O/A\nS0k/Kyzxm0yrUkWXu0uXwvr1mtb2wAPw00+6MjAmEiUnw5dfwm23uR1J4FjiNxesVCnN71+3TrXl\n338fypSBHj3CfxNqY9IbOFBlNSKpZIn18ZuAWLgQPvpI3UHNmqk/9N574aKL3I7MGP8tXarGzfTp\nUK6c29Gczd8+fkv8JqD++EMbjwwdqiqG9epBixbw8MOR0z9qosP06erK/PBDuP9+t6PJmCV+4znb\nt8OcOToJTJ2qk0C5cmpBNW5sVwPGu+bPV5/+kCG6gvUqS/zG0w4dgrg4TYf7+WetfmzcWBtaNG8O\nJUq4HaExMnKkdkv74gu4/Xa3o/l7lvhNWNm7F377DcaP19eiRXUCaN5cVwZ2NRCe5s7VSTwcT+SH\nD8Mbb2ic6qefoFo1tyM6P0v8JmydOaPB4fHjdVu7Fm65JfVEcPXVbkdoMsNxtH8wwA8/aHA/XCxd\nCnffrW7I996DQoXcjihzLPGbiLF/f+rVwIQJGhSuUQMaNVJ56CuvdDtCcy5Hj2pbwo0boU4dDZDm\n9Kf4e4icOgU9e2oP5H79NJgbTizxm4iUnKzVwgsWwC+/6HbNNZpT3ayZ9qi9+GK3ozTpff99ahL9\n7DN47LHUqwGvmDJFJUjKltXMnVKl3I7owlniN1EhMVEngYkTdVWwYoWuBFq0ULdQ6dJuR2hSbNuW\n+vOoXl2t6rp13d/bYe9eePVVVdn88EO44w5348kKS/wmKh08mNot9OuvULCgTgC33qqrgTx53I4w\nup08Cc8/D5/7dvWoVw8+/liVX0PtzBmVGY+NhbZt4b//Df+1JZb4TdRLTobFi3UCmDBBA3b168Oj\nj+pkEO77pIazESOgXTvYs0d7Nz/2GPTqFbp9nBcuVLdO7tzwySdQoUJo3jfYLPEbk058vMYEvvpK\nC8n+9S948UWoXdvtyKJTfLxa2f37q6hf6dLw7rvQqlVwun8cR12CPXvC6tXwzjvQurX7XU2BZInf\nmL8RH68FOR9/rKl6Tz2lvVMvtR2gQ27LFujUCYYP1+ObblJ3XbFiWXtdx1HJkI0bYd48nfAdB9q3\nhwcfjMy1IaFM/HnRzluXAaeB1sDuNN/vBFQEHvQ9jgVaAEnAS8CCDF7TEr8JiTNndBXw5Zea1dGs\nGVSqpDnnXizCFclWrYK+fTXrB+CFF6BjR03XPd8U0JMn4cAB2LVLg/3r1mnPiJ07VSm2enW48079\nfCOphZ9eKBN/O7Rp+tso6VdBCR2gOdp7dzvanrEq0BNtzF4SGAnUzOA1LfGbkDtwQKs0V65UTZaK\nFTU76JZb3Bl8jFaHDqnPf9QoPc6ZU2WQixSBa6/VAOz+/fp5pXxNTNSV21VXaYXtTTfpBH7LLZGd\n6NMLdVdPdiAZ7bObDegGXIeS/MfA46jF/yKQG224DtqDtylwIN3rWeI3rjp1SltMTp2qweHixaFP\nHy0cM6GxdavKeRctCm+9BblyacOf06e11WehQqlf8+WLrgR/Lv4m/vOtqWtLams+xaPAImAyUAFo\nBuQD+gGPAOXTPDc/f03yR4FLOTvxG+Oqiy/WquCWLdUd9M036ir45z/h9dfhhhvcjjDylS6tqpj/\n+59mYb39tvZ39trCr0iQ1XNmWeAXoD3qyz+E+v6LAb2BE6jF39P3/MVAEyD9Pk3W4jeeEx+v3cUG\nDlR3wosvqs/YElHwrVypufaXXKIxgOuuczsibwplV09HYCcwGCgBTAJuTPP9RsDTqKunKurmaYr6\n+McAGfWeOrGxsX8+iImJISYmxo/QjAm8kyc1A6VvX0hI0CDk//0f5M/vdmSR7cwZfebvvqurrpde\n8nbdn1CIi4sjLi7uz8fdunWDECX+wsDXqCWfA+gAzEnz/UbAU2hwF3Ql0ByNC7wEzM7gNa3FbzzP\ncVKX+U+ZouT//POaRWKCZ9MmdfmcPAnDhoVnTZ1gsXn8xoTQ9u1aiDRokMYFPv7YBhuDKTkZeveG\nHj1g8GCV5DD+J37rrTTGD1deqSmfTZqoBMCmTW5HFNmyZ9dCrJ9+0urbQYPcjii8eaWNYi1+4xmO\no+mdF1+sqYSrV6vuz7JlGnTcv1+VJ2vW1NZ8ZcqoBWqDvqGxYYNm/TzwgGb+RPOVlnX1GHMBTp2C\nJUu00vP339V/fOqUyjxPnw779qmeTK5ccP31at1XrqxFXkWKaJ5/4cJu/y+i1759mm5btKhKcURr\n6Q1L/Mak4TjaQ/XECc3EOX4cli9XnZitW7VYq3RpDRQWLaqqjblywY03qr5/6dJ6jeRkm0niVSdP\nwiuvqBDbDz/AzTe7HVHoWeI3Uc1xYNYsiIvTIqD585Xw8+VTTf48eVSLp2xZLfO//XbbyzdSDBmi\nqZ49e6oEdzSxxG+iysmTKtC1a5eS/GefqWX+r3+pzELNmlCyZHT3/0aT1atVaK9uXc2wipYNeCzx\nm4jkOKq+OGmSBlTnzFG//PHj6qIpXlwt+cce0+beluij17Fj8OST2oynTx8NAEc6S/wmoqxZA0OH\nasFO9uzqmilVSlv3lS6tLRYtyZv0HAfGjVPf/w03aNrnVVe5HVXwWOI3YevQIbXklyzRwqh58zRr\no1UreOghqFrVkry5MKdPa8etgQOV/G+7ze2IgsMSvwkbp09r9eXUqanJvkYNbZ5xzTWqrV6vHuTI\n4XakJtzFxanYW9Wq6v4pUcLtiALLEr/xvI0btcH2sGEafH3oIc2Lv/lmmzJpgichQaWe+/VTsbd2\n7TR1NxJY4jeetHEjjBwJ33+vQdlHH9XUu6JF3Y7MRJsNG1RUb/9+VVu9/nq3I8o6q9VjPGXxYm1j\nWL++Fkz17Am7d0P37pb0jTuuv167q7Vtq2mf337rdkTusRa/CRjHgRkz4KOPtJiqc2d4/HHVvDHG\nS5YtU62fWrXggw+0x284sha/cc0ff2inqnLl4Jln1MrfsAGee86SvlfExyvZWftKbr4ZFi3Syu5y\n5VTvJ5o+G2vxG78cP656N0OGqHV/993aLMMWUXnTRRdBYqJmTr34ogbWbdaULFoETz+tVv/nn2vF\nd7iwFr8JOseBhQvhqac0Le7bb5VAdu6EL79Uv6klfe/ZvVtJf+hQiI3V7JYHH9S0WqP9lOfMgZgY\nTfv8+uvIb/3782eaFxiKNlU/DbQGdgPXAf2Bi4AEtOfuIbT1YgsgCW29uCCD17QWv4c5jlr3b78N\nBw6o375NGyhWzO3ITGZ06aKfW79+enzypPq3T5/WybtQIXfj85Jly7SlZunSMGCA91f9+tvi90c7\n4A3f/dbAB777U4Cavvv3AHXQZuuTfcdKAvPP8ZqO8ZbERMeZOtVxXn7Zca691nEqV3acUaMc58wZ\ntyMzF2LBAse54grHWb/+r8dPn9bPtkQJx+nXTz9vI6dOOU7nzo5TpIjjfP+929H8PcCvFrO/Z4rs\nQDLQxfca3VFLfjRQD1iINmF/Hm3K3sP37xYDTYED6V7P938wbjpwQH2c8+drdk7x4nDXXXDHHRoM\ns26c8OI42hqyVSuNv2Rk7lzNvgIYNQry5w9dfF43b562eaxcWVdLXrwyClYff1tgRbpbNZT0JwPP\nAaOAQsBNwETgFuBydDWQHziS5vWOAlG6V473nD6tPUzbtIEqVVQEbd06lbedM0dz8bt00S++Jf3w\n07u3ZvM88si5n1O7Nvz2mzagqVpVM7SM1KqlkiLFikGlSlqEGCnt06z+OZcFxgEVgL2kJvW7UMt+\nLWrx9/QdXww0AQ6mex1r8YfAmTNaSTtnDnz1lQZqK1VSn2aVKlChAuTN63aUJhCmT4eWLXX1ltkN\nZ958U33+PXpoW0M72aeaMSO11EOPHtqlzQv8bfH7UyGlI7ATGAwcR4O2J4H1QH1gJtAIWAnMQ908\n76M+/uycnfQB6Nq165/3Y2JiiImJ8SM0A9oucNYsJfjdu2HPHtWyX7lS+8RWrqwpfU2aQIECbkdr\nAm3PHs3a+eabC9tlrEsXnfy7dIExYzS4GSk1bbKqQQM1lIYNU9mR669X6ZF//lNlw0MlLi6OuLi4\nLL+OP+f0wsDXqCWfA/XlzwEqAf3QyWQz6upJQrN6mqOk/xIwO4PXtBZ/Fh04AEuXKtkPHao52k2a\naE5y0aL6WrFi9G5KHS0SE7UBScOGSuD+OH5cJ45t25T8a9cObIzh7tQp1frp2xeOHoWOHdVd6sYV\nkhVpiyK//66Bp5kzVdJ40SLVr7/5Zs1JvvtutVDsUj36tGypDeZHjcpaxVPHUXJ79VUN7r/3XviW\nNQiWlH2eX3lFn/l996mLrEqV0MVgiT/Cbd2qRVIDBmhQtkYNJfcyZVS/vkKF0F5yGu/57Td49llY\ntSpwpTIOH4ZOndT188svGhMyf+U48Omn+uxffVXlS0LFEn+EcRxYsUKzbkaN0urYe+7RL9b111tr\n3vxVUpKu+N57Ty30QPv+e9Ve6tpVCc5+/1L9+qsmSLzzzrmnzQaLJf4IsXu3qgWOHKlB2rvv1lx6\n25HK/J2hQ1X6evHi4CXl9evh3//WfPbhw228yHG0sVCvXjBihIoThpol/jB27JgupYcOVb99mzaa\nOVCpkrWszPnFx2v2zoQJwR+ITUxUQbO5c9W3/dBDkCdPcN/Tq958Uw20sWMvbPZUIFniDzN//AGz\nZ8N338H48Spw9tBDGhyy1ZPmQgwfrnUZv/4amvdLToZJkzSrZcECnQBeeUUVQKPBgQNa7Tx1qsZV\nSpVyLxarzhkG9u5VSYT779dKyU8+0bS7DRs0cPbvf1vSNxdu4sTg9OufS/bs0KwZjBunK9SZM+Ga\nazTTLNLNmZNavmTePHeTflZYiz/IEhPVsh89WuVemzWDW29Vy96mx5msSkpSJclx45SQ3DJ2rLoo\nn3lGs4AirfvnyBGtixg2DAYNgttvdzsisRa/hyQlaRbEAw9AkSK6DM6XT/PtU1b+WdI3gbBypcps\nuJn0QYlw2TLVeqpQQaUiIsUvv0D58lqstWqVd5J+VliLP4CWLIHBg9W6L1ZMCb5FC9tc3ATPCy9o\nds3bb7sdSaohQ9QH/ttvcMMNbkfjv8RETY8dMEANtoYN3Y7obKGs1WPS2bVLrfrZs7VJydChquxn\nTLAtXw7t27sdxV89/LBWstarB927u1fOICvWrlXZisKFdfVSvLjbEQWWdfVkwbFj0L+/ip5dfbUG\naWNjLelXoBYUAAAVRElEQVSb0HAc/c7deKPbkZztiSdgyhT48EOtRfn9d7cjyryxY9W6f/ZZzZSK\ntKQPlvj9Mm0a3HKLWgMTJujWsyfkzu12ZCaabNumr9dd524c51Kxoma+lC8P5crpanjDBrejOrcD\nB7QC94UXtFr+iSfC70olsyzxX4CFCzUjp00beOwx/aKMGqUNLIwJtVGjvF+M7+KL4d13teq3VCmo\nU0d17b10AnAcraepUAEKFtSAed26bkcVXF75lfHs4K7jqNXSs6dWK77xBrRtGz2LVYw3HTyoLp6p\nU1WkL1zs3Kn1K599pnr27dsHrqCcP/bs0RTU9eu1xqZOHfdi8YdN5wyw06c1ml+5shZW1aunVsoz\nz1jSN+4bNEj7LYRT0gcoUUJXAEuWaOFXmTLa9SspKbRxOI5WO998s7qkliwJv6SfFdbiTycpSb+I\n3bqpRdW+vfrzreSx8Yo1azT4OHMmlC3rdjRZM2sWdOgAO3ao+ufjj6u7JZi2b4cnn9RK+i++CG39\n/ECzFn8WJSaqBHK5cvpl+OYb1dBp3NiSvvGOU6dU0+mdd8I/6YOupGfOhB9/hNWrdQXw5JPBGQNI\nTlbd/GrVNDYyf354J/2s8Cel5QVGA9OAiUAx3/F6wFy0DeNbaZ4fi/benQXU8DvSIDl5UpeeBQrA\n//4HH32kWTsNGrgdWWQ6eFArIbt00UB5wYJw221uRxU+/vtfDZKGuu57sFWrpq6XtWs1fbJOHXj5\nZf2+BMLUqTrJfPWV/r47d7b9hC9UO+AN3/3WwAe++3OBlBnFM4AKQFVgsu9YSeBcC7kdN4wc6Tjq\n7XOczp1dCSHiHTjgOJMnO84bbzhOzZqOkz+/4zRurM97zBjH2bXLcS6/3HF27nQ7Uu+bONFxihVz\nnH373I4k+PbudZynn3acQoUcp317x9myxb/X2bXLce6+23GuvdZxvv3WcZKSAhqm6wC/+sj9Wbnb\nl9QrhVLAId/9BKAQcBHaiD0J+Acwwff9Hb73KwQc8CfYQDl8OLVWTq5c2ryiQgU3I4ocO3ZoAcyE\nCRowO3xY+wrUr68rqrp1z57FUbp0akvPZGzGDK0k/f57uOIKt6MJvsKFtTjytdegXz+oXl3jGu++\nm7kFa/PmwcCB6r597jmtprd1NpnXFliR7lbN973JwF4gpTzUbegksBEYiQYcOgNPp3m9acC1GbxP\nSM+SGzemtvRvucVxzpwJ6dtHnH37HKd3b8epUkUttEcecZxhw/Q5n++znTXLcYoXd5zTp0MTazja\ns8dxypRxnNGj3Y7EPUePOk6vXvr9evNNxzl1KuPnHTniOM88o9+pnj3V4o9k+Nniz+qsnrLAONSt\nswr18/8OdAf2AadQ67+n7/mLgSZA+p47JzY29s8HMTExxMTEZDG0v/fmm2rpd+oENWsG9a0i1sKF\n0Lu3+uzvuEML2xo0gJyZvI5MTNTitzfeUCVTk7FHH4XLLtOWnNFu+3aVUti6VWsBUqZgHjumK4Pe\nveFf/9J2iJdd5mqoQREXF0dcXNyfj7t16wYhmp3ZEXjEd78EsBa4BNgOFPAdfxl4G/XxT/IFdjWw\n9ByvGfIzZUKC49St6zjt2kVev1+wJCc7zooVjtO9uz67kiUd5/33HefgQf9eb/Rox6lTR69rMvbF\nF45TuLD/n3EkSk52nO++c5yiRR3n2Wcdp1s3fUYtWzrOypVuRxdahLDFXxj4GrXkcwAd0EyeB1HC\nP4G6fB4F4tGsnuZoXOAlYHYGr+n7P4TW/v3QsmXq3H239s30smPHYPJkterHj9eG77fdpnLTTZtm\nbWZEq1bq+3/++cDFG0l++01XUVOmRMbUzUA7dAjeegvOnNEsp2gcp7M9d/105gy8/74uDT/6yLoc\nduzQoNqSJVpev3WrNvBu0QKaN1cCCkRtmC+/VA35BQuCv2AnXFWvrmmvodxW0YQXS/xZtHChFsbc\ndJM2X/Biqdtg2bNH+7aOHavWfevWas0XL64FNfnyBfb9Zs2Ce+6B6dOtJXsuv/6qvv1du3SVZUxG\nbCOWLKpeXVvHffyxBijvvBO6dlVtkUi0YYOmBo4YoQGzf/xD+wEPGqQdnYLl1Ckty+/f35L+uSxc\nCI88AmPGWNI3wWHFCNLIkwf+8x9V6rviChVoGzBAEz8jwdGjmvVQtarmRP/+uzbK+OMP+OEHLZUP\nZtIHnViuvVabc5izbd6srp20M1aMCTTr6vkbq1frcrtAAejbN/wqIabYt08Jvn9/VXR8+mld1YS6\nNek4+gz794dGjUL73uHAcVRWoGVLlSw25nysSFsQlC+vfXRvv10VOp94Qv3h4WLxYpWRLltWrfq5\nc2H4cIiJcacLYc0aOH7cm5tWe8EPP0BCArz4otuRmEhnif88cubUjkHr16vMQ4UK2lf36FG3I8tY\nfLxa1NWqaQC1WDFYtUpdVm5v0Td+vAqzeXnHKLfEx6sEeO/eVg3WBJ9X/gQ92dWTkW3bVNlv8mTo\n2FG7ceXN63ZUSu4ffaQt5Jo00dVJkybeSSLWzfP3nnxSJ8QBA9yOxIQT6+oJkVKltNhr/HgtrClV\nSoWk/vgj9LGcOaN9Vxs31vTLYsXUnTJihGboeCXpg4qMgXXzZGTLFs2w6tHD7UhMtPBQaggvlSsr\n6c6fr37Z8uVVK3337uC/98GD2gO4TBno3l1XHVu3arHPVVcF//390b+/BpWtm+evjh/XDKeuXYM/\no8qYFF75Mwybrp5z2bQJ+vRR+ddHH1XhsUCuSD14UIt6fv5ZVxu33w4vvAA1PLe1zdn27tWCuC1b\nIrNwVlZ06qST9pAhdlI0F866elxWpowWf61ZoyuAsmVVTTE52f/X3LFDr9GwoWrWp8zIWbtWW0OG\nQ9IHzd2/5x5L+ulNmaLP5r33LOmb0PLKr1vYt/jTW7MGHntMA5qffZa5P+wTJ7Qt3LRp2ipu40at\nIL73Xq2szZMn+HEH2ubNKns9a5at1E1rzx51Fw4frqnCxvjDavV40IkTKnD2/POatZGRffvUfTN6\ntJJ95cpKBI0aaTHPRReFNuZAa9ZMt/bt3Y7EO5KTVeG0Zk1QOXVj/GO1ejzokks0w6Z+fc37f+op\nFTzbuhV+/FGDw8uWaUbOvffCF19EVqXKyZPVr2+rUP+qc2eVu37jjfM/15hgsBZ/CKxbpzn/P/2k\nxzlzagD4rrs0FTNS9wJt2FAnu4cfdjsS7xg0SDOx5syJjr1zTXBZV08YWLdOs1uWL4eKFd2OJriW\nLNH4xObNmd+KMdKllKOeMQNuuMHtaEwksK6eMFC2bORU+vw7p05pTKNDB0v6KZKSNNbTt68lfeO+\nrEznvBE4DKQMP9YG5gIzgS5pnhcLzANmAWEyAdFkxTvvaBvLZ591OxLv6NVLXTvRvsOb8QZ/22MF\ngF7AyTTH+gP3AFuAcUBldGJpCNQCSgIjgZr+Bmu8LzkZvvpKe/Ta3HRZt07bey5YYJ+J8QZ/WvzZ\ngAFARyDBd6wAcDFK+gATgCZAPeA337Ed6ERTyN9gjfetWaMN2KNx4+uMOI5mNXXqpEV4xnjB+Vr8\nbYH0k/G2AcOB5b7H2VDiP5LmOUeBa9EVwYF0xy9Nd8xEkEmTtMmLkc8+U/2m555zOxJjUp0v8X/u\nu6W1AZ0Q2gJXodb97UD+NM8pgPr/T6c7nt93/Cxdu3b9835MTAwxMTHni9140Ndfq1vDqFR2586a\nxRPuC/GMN8TFxREXF5fl18lqj+MWoCxK8EuAe33Hfga6AmeAHkBT1Mc/BvX9pxcV0zkj3d69mrm0\nf7/N5klIUC2lV1+FNm3cjsZEKremc6bN1k8DQ4Ac6Cpgge/4DGAOGk+weR4RbNw4LUiL9qQP8Mor\nUKmSFuoZ4zVemWNgLf4I8PjjauU+9ZTbkbhr8mS18lessBr7JrisLLNx3YEDcOWVbkfhrhMntHit\nf39L+sa7LPGbgMmVSytUo1mXLlCrlqpvGuNV1htrAur0abcjcM+CBTB4MKxc6XYkxvw9a/GbgFm+\nPHo3W0lM1BhHr17W3WW8zxK/CYj4eNi5UzNZolHPnlC8uJWgNuHBunpMQOzercHMiy92O5LQW7cO\neveGRYusFo8JD9biNwFx+LAqckab5GR18cTGQqlSbkdjTOZY4jcBkStXdA7sDhgAZ85YCWoTXqyr\nxwTEd99B0aJuRxFaO3dq+ua0aZAjh9vRGJN5XumRtJW7YWzXLg3qrlkDhQu7HU1oOA7ccQdUr65u\nHmPcYFsvGtcsW6Y9hKMl6QOMHQsbN8LIkW5HYsyFsz5+k2W1a8OGDSo/HA1OnVIRtg8+sHLLJjxZ\n4jdZVrAgtG6tTViiQa9eUK4c3Hqr25EY4x/r6jEBsX493Hmn21EE3+LF0KcPLFzodiTG+M9a/CYg\nqleHiRPdjiK4TpzQyty+fW3OvglvlvhNQFx6KRw/7nYUwdWnjzaRf+ghtyMxJmusq8cExO7dkV2n\nJz5eg7mzZrkdiTFZl5UW/41o4/SUeQ2NgdnANGAEkMd3PBaYB8wCamTh/YyHVawIY8aoOyQS9ekD\nzZvDDTe4HYkxWefvAq4CwDCgGnA12mx9LdAA2Ae8C+xByb4nOimUBEYCNTN4PVvAFeYcB+rXh9mz\noUgRuOkmqFMH6tXT18sucztC/02erL79efOsb994i78LuPxJ/NmAocB7wGigLEr8RYC9vuf0BNYD\nuYFLgO6+44uBpsCBdK9piT8CHDmiLp/8+bWoa/ZsdY0sXAilS2u+f61aupUvHx5lDjZs0Antu+8g\nJsbtaIz5q2Al/rbAS+mObQOGA98CW1CXz6k0378HeB21/tujJP+p73vTgDbA5nSvaYk/giUm6kQw\nb17qbc8eqFZNVwNNm0Ldut4r6ZyYCDVrwhNPWBE2402hbPFvAHb67tdG/fcxvscvo8R/J3AQeAG1\n+nv6vr8YaOL7XlpObJqCJzExMcRY8yqiHTyorQpnztQ00DVroEEDaNZM6wG80KXSs6dimzDB6uwb\nb4iLiyMuLu7Px926dYMQJf60tpDa1dMZqAo8DJz0fb8q0AN175QExgCVM3gda/FHuYMHYcoU+PVX\nGDVKg6h33QUtWmi8INSJd/ZsFWGbPx+uvTa0721MZoWyxZ/WZtTVczmwHVhEarfPcGAAmtXTHM0g\negnN/EnPEr/5U2KiBlTHjoVx4zQW8OCDGmAtVy747z99Otx3H3z7ra5AjPEqtxJ/oFjiNxlyHFi6\nFIYMgWHD4JJLNCZwxx3QuLE2gAmkKVOgVSu9V+PGgX1tYwLNEr+JeI4DK1aoz/2nnzTj5t57lagb\nNMj6LKHRozWQO2IENGoUmJiNCSZL/CbqbN0K338Pw4fD77/D/ffrSqBuXciT57z//E+OA++8A59+\nCj/+qJk8xoQDS/wmqq1bp7n2v/4Ky5fDbbfB//2f5t7nzXvuf3f8OLRpA9u3K+kXKxaykI3JMkv8\nxvgcPgyDByuRL1wINWpokLZZM6hcGbL7CpVs3aqpo1WqqLWfO7erYRtzwSzxG5OBY8e0GfqECbrF\nx8Mjj6hl36MHdOgA7drZPH0TnizxG5MJ69ZphtC+fRoUtkFcE84s8RtjTJTxN/HbRizGGBNlLPEb\nY0yUscRvjDFRxhK/McZEGUv8xhgTZSzxG2NMlLHEb4wxUcYSvzHGRBlL/MYYE2WykvhvBA4DF6U7\n3gkYluZxLNqXdxZQIwvvZ4wxJgD8TfwFgF6k7q2bojnQAkipv1AVaAjUAloB/fx8P09Iu8mxl4VD\nnOEQI1icgWZxeoM/iT8b2ku3I5CQ5vh1wJOohZ9SO6I+MMF3fweQEyjkV6QeEC6/DOEQZzjECBZn\noFmc3pDzPN9vizZIT2sb2kh9ue9xNiAfas0/ApRP89z8wIE0j48Cl6Y7ZowxJoTOl/g/993S2oBO\nCG2Bq1CLvi9QBPgOuAwoBnQAjqDknyI/GhcwxhgTprZw9uBuI1IHd6sCk9BVwdXA0nO8zkY0LmA3\nu9nNbnbL/G0jfjhfi/98nPMcXwzMAOag8YRnz/H867IYhzHGGGOMMcYYY4xxRS5gMDAdLey6HXX1\nzPQd+wTvbAlZGE1DvQHvxtgRmA0sAFrjzTizA1+QGldZvBdnLWCq7/65YnsCfc5zgNtCHSB/jbEy\nim8q8Cv6XQX3Y4S/xpniIfR7msJrcRYGRgPT0Oda2nfca3HeiH43Z6CJN1753TyvR4HevvuXA9vR\nB97Qd6w/cFfowzpLLuAnYC1KVGPwXowxKC6AvEA3vPlZ/hPN+AJoAozEW3G+hqYnpySmjH7WV/me\nkwstYFzO2RMbQhljHFDJd/9JtKCyiMsxwtlxAlRBkzxSjrn9WcLZcX4F3Oe7HwP8C2/GORz9PQF8\ni59xulGrZwTQJc37J6LZP9N9x8aj5OC2nuiPfo/vsRdjbAasAEYBY1HCqob34kxA6zey+b6exltx\nbgTuIbX1lNHPugYqO5KIpilvJDXxuhFjK1LX0uRCn3FNl2OEs+MsBLyD1gOlHPNinHWBksBE4GFg\nikfjTECfaTY0Pf60P3G6kfiPA8dQ0COAN9LFcQwlBzc9CuwDfvM9zsZfuyK8ECPAlSiB3gc8DQzF\nm3HOAnKjq6cBwId4K84fgaQ0j9PGlrLosAAQn8HxUEkf4+++r3WB54A+uB8j/DXO7Kg74hX0M07h\ntThBXTsHgaaoF6IDylFei/MjtG5qNeqemoYfn6db1TlLojPqN2jOf3Ka73lhkVcb9AswFfWlfo2S\nbAovxAiwH52ckoD1qHZS2h+4V+J8DSX/sujz/Aa1UlN4Jc4UaX8fC6DYMlqMeCiUQWXgAXRV2gKt\nhvdajNXQeEl/9HdeHnXzxuOtOEGfX0q36VigOt77PEHdOw2AcmistBd+fJ5uJP4iKFm9hvrVAJag\nhV+gQm/Tz/5nIdUI9fPdghad/R8aQPNSjKBBnpT+vmLAJcBkvBdnXvRHBPqFzIn3fuZpZRTbfPQH\ndzE6uZYDVroSnfwbtfRjgK2+Y16LcQFQAf0dtUKt1Fd8x70UJ+hvKWVQtBGKx2ufJ+hv/Kjv/h5U\nKcGLcZ6lL7AbtaZTbpXQYNVsYBDuz/BIayqa1XM93oyxO/rBL0RXKV6M8zI0UD4DmIuSgNfiLE3q\nANq5Ynuc1M/67tCGB6TGmB21UBeT+jcU63uO2zHCXz/Lcx3zWpxXowbpLGAcqVfOXouzCfobikPl\ncq72HfdCnMYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY/4fJm35S3uEZEsAAAAASUVO\nRK5CYII=\n"}], "language": "python", "input": ["pt.plot(stickman[0], stickman[1])"], "collapsed": false}, {"metadata": {}, "source": ["Now define A to be a rotation matrix: (Use geometric intuition!)"], "cell_type": "markdown"}, {"prompt_number": 18, "metadata": {}, "cell_type": "code", "outputs": [], "language": "python", "input": ["alpha = 0.1*np.pi"], "collapsed": false}, {"prompt_number": 19, "metadata": {}, "cell_type": "code", "outputs": [], "language": "python", "input": ["A = np.array([\n", " [np.cos(alpha), np.sin(alpha)],\n", " [-np.sin(alpha), np.cos(alpha)]\n", "])"], "collapsed": false}, {"metadata": {}, "source": ["Now multiply the geometry by this matrix, reassign to `stickman`, and plot:"], "cell_type": "markdown"}, {"prompt_number": 39, "metadata": {}, "cell_type": "code", "outputs": [{"prompt_number": 39, "metadata": {}, "output_type": "pyout", "text": ["[]"]}, {"metadata": {}, "text": [""], "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD/CAYAAAD2Qb01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8U/X+x/EXINtSdgFlCqgIKiCIglCUoeLCKwpXURS9\nqFevOH6Oq1fqHqi4cIITJ6CA4gCFIDIEAQWVjexdRhltKSW/P96JCTXQkrY5OTmf5+NxHk3TNP20\nTT7nez7fBcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHGpXoCH4R9fg4wHZgCjATKB+4fBPwETAPa\nxDJAY4wxRecFYCHwYdh9i4AagduPA7cCrYDvA/fVBWbFKkBjjDGRlYzy+6YBNwElwu7rBGwJ3C4N\nZAHtgQmB+9YARwHVovyZxhhjikB+ib8/sCDP0Rr4NMJjNwU+XopOAu8BlYCdYY/ZBSQXIl5jjDGF\ndFQ+Xx8eOArqdpT4zwWygQwgKezrScCOIwnQGGNM0cov8R+J+1FNvysq84BKQk8Dz6Aaf0lgW95v\nPO644/zLly8vwlCMMcYTlgONj/Sboq3xA/gDB0AK8CBQG/gamAwMAOYCU4EZwCjg5khPtHz5cvx+\nv2uPQYMGOR6DF2O3+J0/LH5nD+C4aJJ3YVr8UwIHqL5f9hCPeyhwGGOMiQOFafEbY4xxIUv8RSA1\nNdXpEKLm5tjB4neaxe9OJfJ/SEz4A/UqY4wxBVSiRAmIIo9bi98YYzzGEr8xxniMJX5jjPEYS/zG\nGOMxlviNMcZjLPEbY4zHWOI3xhiPscRvjDEeY4nfGGM8xhK/McZ4jCV+Y4zxmKLciMWYiPx+yMiA\ndesgPR127YLduyE3t2DfX6YMJCeHjkqV9LFcOSgRL6tNGeMilvhNkdq4EebPhwUL4Lff9HHxYn3t\nmGOgenVISoKjj4ajCvjqy86GnTsPPjIy4MABqFYN6tfX0aBB6GOdOvpa9epQvnxx/bbGuFO8tJds\ndU6X8vvh559h9GgYP16t+lNPhRYtoHlzfTzxRLXQi1p2NmzdCqtWwcqVoY8rV+oEtHWrrjBKlYLa\ntXXiOfZYfQyeLIJHpUpFH58xxS3a1TkLk/h7ApcBV+a5/79AC6BP4PNBwPnAfmAgMDvCc1nid5H0\ndPj2W5g6FSZNUsmmd2/o0QPatlWijRd+v8pKGzbopLR2rY7Vqw8+YZQt+/crh/DbVataWcnEn2gT\nf7SlnheAbsC8PPefh5L86sDnrYCOwOlos/XRQNsof6Zx0MaNatGPHQtTpsDZZ0PHjtC/P7RuHb9J\nsUQJlZaSkqBp08iP8ftDVw7Bk8Gff4LPFzox7N8PDRvqKubkk3W0aAF168bv727MoUT7kr0c2Iw2\nVA+27BsDg4GXgesD9/8HKAc8HXjMXKArkJ7n+azFH4fS02HECPjgA1i6FLp1gwsugIsv9l5pZMcO\nWLFC/RbBPoz58yEzM3QiaNUKunSBevWcjtZ4RXG1+Puj8ky4fsCnQGrYfUcDQ4G+QLOw+5M4OMnv\nApL5e+I3ccLvV/nmjTdUzrngAnj8cejUCUqXdjo651SurMTeqtXB92/erJPAggUwcSLcc486lLt3\n19GpE1So4EzMxhxKfol/eODITzcgBfgEqAzUAe4BMlDyD0oCdkR6grS0tL9up6amenYvTKesWwfj\nxsGwYeo0vflmeP11JTxzaDVrwjnn6ACNNJo7VyfNJ56Ayy+Hdu1CJ4Lmza00ZKLn8/nw+XyFfp7C\nvARTObjUE9QJuDFwfytU5umKavzjgFMjPJeVehyyeDGkpSlRnX8+9OkD550HJW1qX5HIyNAV1Lff\n6sjOVif4ZZdB587evooyhRfrzl0Af+A41NdANf2pwAw0S/jmQvw8U4TWr4cHHoAvvoA77oA339TY\nelO0KlWCSy7R4ffDsmXqIH/wQfWbdO+ujvKzz1bnsV0NmFiIl5eZtfhjJDMTnnsOhgyBG25QTdrK\nOc5YswYmTNAVwaRJGlIaPAl07w41ajgdoYl3TozjL0qW+GNg7FgYOFAdlIMHQ6NGTkdkgvx+WLRI\nJ4Dvv9fHDh2gb1+V3rw2isoUjCV+c0gHDsB998HIkTB8uGrLJr7t3g2ff66htD/+qDkDXbrANddA\n48ZOR2fihSV+E1FODlx3nSYiff65hhoad8nKgunTNYHuvfegZUsYMAAuusg6h73OEr/5m8xMuOIK\nLakwcqSNJ08EWVnw2Wfw2mvqKO7fX301NmnMm6JN/DZoL0FlZKg2XLGiWvqW9BNDuXLwz3/CDz9o\nwtjOnboCuOgirZ1kTEFYiz8Bbd2qpN+6NQwdGl+Lppmit2ePltYYPBhSUuCxx8DmP3qDlXoMoBm4\nXbtqPZ3HH7dx4V6Smwuffgr33gtnnqn/f8OGTkdlipOVegzz5ukN36+flguwpO8tpUpp5vXChdCk\nCbRpoxLQhAka2WVMULykBmvxF1J6Ohx/PLzyitaHMWbvXvjwQ3jpJTUCHn9cJUBrECQOK/V43MCB\n2st2eEGW1DOe4vdr8t7992s474svwimnOB2VKQpW6vGwYcPgm2/gySedjsTEoxIltFbQ/Plw5ZXa\nV+HWW7Vek/EmS/wut2aNOvM+/9zWdjGHV6oU/Otf8Mcfut28ueYAbN3qdGQm1izxu9zgwZrEc+KJ\nTkdi3KJaNXj+eViyRCuytmoFkyc7HZWJJavxu9jWrerQ/eUX7f1qTDTGj4d//1vrAT3zjF5Txh2s\nxu9Bzz0HvXtb0jeF06OHNuTp3Bnat4dnn9WcAJO4rMXvYm3bKvl36OB0JCZRLF+uRf0qVIBRo7Tk\nh4lf1uL3oE2brLVvitZxx2k/gJQUXQGsWuV0RKY4FCbx9wQ+CPu8MTARmAJ8A1QJ3D8I+AmYBrQp\nxM8zYfx+LcRmi6+ZonbUUfD221rZtW1b7QdgEku0e+6+AHQD5oXd9wZwLzALuBQ4AcgGOgKno83W\nRwNtow3WhKxYoREZNoTTFIcSJeDOO9Xhe+ml6gBuY822hBFti38acBOh2lJ5oAZwETAZOAO18jsA\n3wYeswadaKpFG6wJ2bVLw/KMKU7dumk2eI8e8N13Tkdjikp+ib8/sCDP0Rr4NM/jqgInoVJPZ1Tm\nuQZIAjLCHrcLSC501IY9e6BMGaejMF5w4YVa9fPqq7U0SGam0xGZwsqv1DM8cORnG0rqUwKffwl0\nBRah5B+UBOyI9ARpaWl/3U5NTSXVFhQ/rDlzNPHGmFhITYUFC+Cmm3R7zBioXdvpqLzH5/Ph8/kK\n/TyFGc6ZCgwA+gQ+nw3cDvwIDAGWoHLP0+gkUBcYB5wa4blsOOcRCp4nw86XxhQ7v1+rfL72mpYJ\nOe00pyPytmiHc0bbuQvgDxxB/YGhgedcAfwfsB+YCsxAZaWbC/HzjDEOK1FCq3w2a6YlnidNUgew\ncZfCJP4phEo7APOBsyI87qHAYYxJED17ar3/Sy6B2bOhalWnIzJHwiZwuZhVx4yTrrxSQz179tQo\nM+Melvhdqn59ra9ijJOefFKLup17Luzf73Q0pqAs8btU587g81mr3zirVCl4/XUoXx5efdXpaExB\nWeJ3qQYN9GZbuNDpSIzXlSih7Rwffhi+/trpaExBWOJ3sc6dbQMNEx+aNYMvvoBrrlFnr4lvlvhd\n7OyztYaKMfGgXTt46SXN8M3JcToacziW+F3s0ktV6pk40elIjJErroBateDDD52OxByOJX4Xq1BB\nLaybb4asLKejMUZuvRU++CD/xxnnWOJ3uQsugObN4emnnY7EGDnpJFi50ukozOHY1osJYPVqLdg2\nfz7UqeN0NMbrduzQPJM1a6BSJaejSWy29aKH1aunqfNWVzXxoHJlNUDWrnU6EnMolvgTxFVXwYgR\nTkdhjBw44HQE5nAs8SeIjh1h506YNcvpSIzX7dgBGzZAo0ZOR2IOxRJ/gihZEq67zlr9xnmbN2tI\nZ7lyTkdiDsUSfwLp1QtGj7bLbOOs9ettmeZ4Z4k/gZxwgt5wM2Y4HYnxsokT4ZxznI7CHI4l/gRz\n2WVaLdEYp0yYAF27Oh2FOZzCJP6eQPj8vPbATLTN4iNh9w9Ce+9OA9oU4ueZArjjDpg5Ez76yOlI\njBelp2ufiDPOcDoSczjRbr34AtANmBd237NAP2AR2me3OVAG6AicjjZbHw20jfJnmgJISoJPPoFu\n3bQRdpMmTkdkvGTSJDjrLChb1ulIzOFE2+KfBtzEwTPGMoFqKNmXQxutdwC+DXx9DTrRVIvyZ5oC\natkS0tK0YFZ2ttPRGC+ZONHKPG6QX+LvDyzIc7QGPo3w2GeAL4E/gNXAYiAJyAh7zC4guXAhm4K4\n+WZo3Bj69YN9+5yOxniB32/1fbfIr9QzPHDkpzzwInAisBF4CrgTJf2ksMclATsiPUFaWtpft1NT\nU0lNTS3AjzWHUqIEvPMO9OmjERZffKGp9MYUl+++09j9Zs2cjiRx+Xw+fD5foZ+nMIu0pQIDgD5A\nRWAhqutnALejks5nwNNAV1TjHwecGuG5bJG2YnLgANx5p1pin32mjbGNKWp79sDJJ2sLxh49nI7G\nO6JdpC3azl0Af+AA2APcA3wH7AW2o47enaijdwYqK91ciJ9nolCyJDz3nDbC7tFD2+JVqeJ0VCaR\npKdrraizzrKk7xa2LLOH3H23tmocP16btRtTWGPHwg03aLvFJ56A0qWdjshbnGjxG5d5+mk45hho\n3x7ee89mV5ro7d8PL78Mjz6q5N++vdMRmSNhLX4P+uYbuPFGaNoUunSBU06BU0+FlBSnIzNuMG2a\nRo3VrKnkb/1Gzom2xW+J36Oys9XZ+9NP8OuvOsqW1QmgZUvo2xdOPNHpKE082bwZ7rlHY/WffRYu\nv1yjx4xzLPGbQvH7tVXevHla5O3ttzULuEOH0NG0qTqLTewNGwY1amg2du3asf0//PabNk8fNky1\n/LQ0vTaM8yzxmyJ14AAsXAg//qhL+x9/hI0btQTE6afrqF0bqlcPHUlJ1gIsLof7u6akQNu2Wh8n\nJUUnheRk/U9q1NBRpUrBTxYHDmj/5unTYdw4WLBA80FuvFGTAk38sMRvit3u3bBoka4I5szRpf+W\nLbB1q459+/6++UZysmrBKSn6WLOmJpIlJ2sj7kqVdMI4VFKqUwcaNoSjbBgCAFlZsHq1TsYjR8KU\nKbB3b8G/Pzk59L9o0ACOO04n8xo19LzffQfffw/Vqml4ZocO0Lu3rb0TryzxG8dlZenYuhVWrIDl\ny1U6WroUNm2CVauOLEnltWmTEpaJbM8e/c2XLoVly7T94aZNOkFnZuprmzfn/zxdu+rq4dhjNQos\n+LFqVbuiizeW+E3MZGbCypXw559K8HmPsmW132rwCE4YK1tWLcny5aFUKd1OTj44mfj9sH27ykob\nN6oTOjMT5s7VCJK6dR35lROe36+ds37/Xf/bdetg7dqDP2Zl6SRQrx7Ur68rhuDHhg31v7ETQ2xZ\n4jdHzO9Xi3DlSr25t26F3NzQ13NzYds23b9lixLDihWaqVm/vt7s4Qm+USPdl2zL8CWkPXv0Olm9\nWq+ZVav0ceVKXU1kZYWGBgePZs2gTBmHA09glvjNQbZu1eX+5s1K7nmPjRs1iufoo9ViO/ZY1XnD\na+klS+ryvkYNdRTWrq3kXqeOWuzGhNu8WcOCf/kl9HH5cl0JHH986GjaVB9TUuwKobAs8XuY3696\n7syZMHky+HxK6k2b6s11qKNuXSV+Y4pLdraS/5Il2plr8eLQ7X37QieBY45R6a9aNTU0gleQFSo4\n/RvEN0v8HpCbq1E1S5boknvWLH2+eLHq5q1aQefOOlq2tJEwJr5t2xY6CWzYoBJierquSFesUB9S\nlSq60gyOCDvmGPUx1K2rj/Xq/b2fyEss8SeYAwc0ZHLqVI2hnzVLb4j69eGkk9RiP+MMza49/nhb\ncdMkntxc9Stt3hwqWa5bpz6G1at1VbtqlZJ+8CQQPMJPDMcck7j9DJb4XW7XLtVE585Vwvf5oGJF\nOPtsjaU+4wy9gG31Q2NC/H7YuTN0Mgg/KQRvb9ig8lGkk0LwqFbNnVcNlvhdZutW7Yr1/ffw8896\nobZoAa1bq2Rzxhm2k5ExRWH/fiX/SCeF4JGVdfBJ4dhjQxMNg0fFigefHEqVUhmqbFn9jAUL1FCL\nZYnVEr8L5ObqxTFsmNY+6dIFunfX8gcnnmg1eWOcsmuXTgjBk8K6dbBjh64mgseePQd/T06ORscF\n97TOyNCih6dG2mOwmMRyPf5kYATaP7cMcAcwE2gHPA/sByYADwcePwg4P3D/QGB2FD/TtfbsUcv+\n44+1/eGxx0KvXvDHH2otGGOcl5SkK+zCXGW3bKnSkxtEk/hvByaizdWbAh8BrYHXgJ7An8B4tLdu\nSaAjcDrac3c00LbQUcex9HSNUli6FL7+WseZZ2q9k3fesQ3PjTHOiybxDwGyA7dLA5mEWv9/Bu7/\nFugSeNyEwH1rAj+vGpAeZbxxx+/XejSjRsGYMbpEPOEELX7VubOWGahe3ekojTEmJL/E3x+VZ8L1\nA+YAtYD3gdtQ+Scj7DG7gEZAFgcn+V2Bx7o68a9cqVre3LlK+KDyzbvvqmPWZrUa4z3Vqmmto5Yt\nnY4kf/kl/uGBI68WqMRzJzAVqIRa/UGVgB3Avjz3JwXud40VK+CppzQFfcsWHWXLQseOqgeOHKl/\ntBuHghljik6bNppX4AbRlHqaASOBXsCCwH0ZKMk3QuWebkAakAs8DTyDavwlgW2RnjQtLe2v26mp\nqaSmpkYRWtFKT9c/89ZboV+/0KYWlSpZojfGHGzGDLjzzuL9GT6fD5/PV+jniSZ9jQFOBoLnth2o\nU/d0NKqnFKrx/y/w9UHAeSjpDwSmR3jOuBzOuXmzZsVu2PD3DUaMMSZcixbw/vvuGM4ZL+3WuEz8\noE0pzj8fbr/d6UiMMfEqI0Mz6zdtiu3CcrEcx+8pzz8P552nlQIvvtjpaIwx8WjyZM22d8tqopb4\n83HSSfDpp3DRRZrWfcUVTkdkjIk3q1apLOwWlvgLoF07bUJ9wQX6B999t9MRGWPiybZtmv3rFiWd\nDsAtTj4Zpk+HN97QRC1jjAmaN09zeNzCEv8ROPZYeOstuPlmbSBhjDGghdoqVnQ6ioKzxH+EOnaE\nRx6B1FTtEGSMMevXu2tpFhvOGaUnntBqm19+6a4zvTGmaO3erR3xtm+P/U5f0Q7ntBZ/lO66Cxo0\ngE6dNMHLGONNc+aoD9BN2zta4o9S6dKq919yiZZdtpq/Md7000/aTMlNLPEXQokS8MADOtq3hxEj\nnI7IGBNrbkz8VuMvIgsWaGbvddfB/ffbIm7GeEW9ejBpEjRuHPufbWv1xIENG7S8Q/v28OKLti6/\nMYlu0ybtl52e7kxjzzp340Dt2jBlCixcqKUdsrKcjsgYU5xmz4bTTnPfFb4t2VDEkpO1z+7VV0P3\n7tpovVIlp6MyXrJunYYaB5UsCU2bwimnuGcRMbeYNk17drhNvJynEqLUE+7AAbj2Wn18/32nozFe\n8sILMHCgtgK88ELYvx/++ENXoscdB61ba0GxqlW1m1yDBrrPTWvNxIN9+/S3mzABmjd3JgZbljnO\nlCwJr7yi9TtGj4Z//MPpiNwlJwd++QV27Ah9vmqV9jvOyYGjj9ZMyRo1oEqVI+tPOeoobZZRpUqx\nhO64AQNg8WLIzobhYRunZmfDb79p3Pny5Zp5npmp7UV/+UUngjZt4KyzdGIoXVodl02a6PVsDjZr\nlsq7TiX9wrAWfzGbOFFbN/7+uzc6e3NztS/xxo061q9Xp/f69fo8Oxt27oStW3U1FOT3K6FnZsLe\nveofOeEEzYgE/e3q1VMLq2xZzZbculU/a9s2fX9BZWXBjz9qc53nnivSXz9ubN+u2vOTT0KvXvk/\nfv9+WLtWf5eZM2HpUv0vV6zQ37lJE6hVK3TUrq2PTZoo8XnhtZ3XgAGate/kayiWo3qSgRFo4/Qy\nwB3ATOAc4BEgB9gMXA1koq0Xzwf2o60XZ0d4zoRN/H4/dOgA3bppmOdRLr3G2r5dSXbnTtWQ167V\nxw0bQkl+40aNbqhWTUkhJQXq1FGSqFNH95Utqz6PGjX+nixKl1YNukIFKF9enxeH119X0h86VOW4\nRPXdd5phPm9e4Tof09N1dRD8Hwf/5xs2qIS0ahXUrQsNG+rE3LChRrYFT9pBlSvrqqJkSfdfQUyY\nAP/+tzp3K1d2Lo5YJv40tGH6i0BT4COgNbAIOAvYAjwObACmAYPRSaEuMBpoG+E5Ezbxg5Jk165w\n6aXw2GNOR3Mwv18t5vAEHn577VqVDfbsUeKuVEmrlB5zTOgIbwlWrx6/J7c9e2DYMP0PZs7UrmqJ\nLDdXu0L17aurzuKydy+sXq2Tw8qVsGyZRrdlZIQe4/er8bB9u07+rVtD/fqhBkKtWiq/tWhRfHEW\npXvuUbnxf//L/7HFKdYt/mwgCzgJeB3oANQCNgYeMxhYApQDKgBPBe6fC3QF0vM8Z0InfoBff1Xy\n//BD6NIlNj8zK0v13BUrVCvfuvXvCX7TJr2Awy/fw2/XqaN6b5067huyFm7MGLXQ2rWDBx/UCBcv\nmD0b+vRR6SZe/n87d8LPP4fKf8HX4rRpoRFIDRvqxBw8GjSAcuX0/aVK6eThlH37VIb84AOdWJ1U\nXJ27/VF5Jlw/YA5K9O8DtwXuDyb9S4FOwAPAXRyc5HehE0fexJ/wTjkl1Ml77bWH71isWFGlkJIl\nVfNOT9eLLa/sbL1psrJUo121Ssf+/aqBZ2aqBXXCCfp51aqpszk8wQfLL4lq71645RaYOhU++kjL\nanvJaacpYU6dGj+/e3IynHPO3+8/cEAnqBUrdPWwYoWuzFas0JVE8D2Qk6MyYHKyTgIVK2qL1ORk\nlQlr1AidJPIqU0bvhapV9bFChYNPiCVL6vtTUg5dahw9Wicjp5N+YUTbBmiBSjx3At+G3X87SvwX\no3LQrajVPzjw9blAl8DXwiV8iz/o1181tn/37kM/JiNDrXPQC7hq1cgv5DJllLjLl9cLNtj5Wbq0\n3gyVK8dPKy/Wfv1VV1cff6yE9+qrurLxoiFDNGrn3XedjqRo+P06oe/Yods7d2rwxO7dKudt2RK5\noQRqLG3frvLm9u16nnDBwQlbtuh9F+yfCh61a8NLL8FDD8FllxX/75qfWJZ6mgGfAb2ABWH33w+0\nAq5EZSACnz+Nyjt1gXHAqRGe0z9o0KC/PklNTSU1NTWK0IzX+f3w/PPw1FNaN6lXL2jZ0umonLVl\ni0bfLFvmrs1CnJSbC5s3qxwVfqxbp6v3W25xplHl8/nw+Xx/ff7QQw9BjBL/GOBkYFXg8x3AAGAN\nKgFlB+7/GNX/BwHnoeUhBgLTIzynZ1r8pnjs26c6/iuvqDX3xRfqPDRy2WVwwQXQr5/TkZiiZIu0\nGU86cEC1+wceUKK/6Sbo2dNdm2LEwrBhKvX88IN3y3+JyBK/8aTbb9fQwSFDtBuaiSw3V2vG3347\nXHml09GYomKJ33jKwoWaEPfbb9oII1GXXyhKM2dqxzifTyO9jPvZsszGE3bu1Eb3HTtqRvS8eZb0\nC6pdO+jdG157zelIjNMs8RtXWL5co3QaNNAyAVOnwh13aNiqKbj//AdGjdLkI+NdcTq53piQr7/W\naJRbblHSr13b6Yjcq1Ej+OYb6NxZn1u935ss8Zu4dt99ap2OHBk/M0/drnlz7RHbvTvUrKmlRIy3\nWOeuiVsTJsANN2jWqdXxi96UKRrf/+mnoSsA4y7WuWsSRk4OvPmmyhDvvGNJv7h06qQ5EFddBUuW\nOB2NiSVL/CZu7N+vESdNmmidnW+/tZZocevSRevOtGunlr/xBqvxm7iwciVcfLHWkvn4YyUiExvX\nX68tF7t106zeguzYZdzNWvzGccG9ia+7TrtGWdKPvVNOUZ/KbbfBiBFOR2OKm3XuGkd99ZVanNOm\nafMN46w//tBm6/Pna3c1E99syQbjOr//rhr+2LHu3tQi0dx7r5bE+Owzb26i7iY2qse4yq+/woUX\nwnPPWdKPNw8/rJ3cvvnG6UhMcbHEb2IqO1t733bvrqWUr7rK6YhMXmXKqNX/f/+nobUm8VjiNzGz\nbp3Gjm/cCIsWqTPXxKcrrtAIqzFjnI7EFAdL/CYmvvgCWrdWeWfUKO0HbOJXiRK6Mnv1VacjMcUh\nms7dZGAEkASUAe4AZoZ9/b9oM/Y+gc8HAecD+9HWi7MjPKd17iawlSuhbVslfFtvxz327dOuZlOm\nQNOmTkdjIoll5+7twEQgFegHDA372nkoyQezeCugI3A60DvPY41H/Otf2vnJkr67lCmj+RVz5jgd\niSlq0ST+IcAbgdulgczA7cbAv1ALP3gG6gB8G7i9Bs0UrhZVpMaV3nwT1q5V4jfuc9118OKLTkdh\nilp+ib8/sCDP0RjIAmoB7wP3AUej1vwAIDfs+5OAjLDPd6FSkfGADz+EtDT4/HMoV87paEw0unfX\n0M7Jk52OxBSl/NbqGR448moBfATcCUwFLgVSgE+AykAd4B6U9JPCvi8J2BHpB6Wlpf11OzU1ldTU\n1AKEb+LVunXaOOWHH+D4452OxkTr6KO1kf1DD9mCefHA5/Ph8/kK/TzRdO42Az4DeqErgLw6ATei\nzt1WwNNAV6AuMA44NcL3WOdugnn0UVizBl5/3elITGEtXar+mTVr4Chb1jGuxLJz93E0mudFYDLw\neYTHBLP4XHRFMAMYBdwcxc8zLrNunerCt97qdCSmKDRpokXcwi7KjcvZWj2mSB04oK38UlPhf/9z\nOhpTVDZsUKv/2WfhooucjsYE2Vo9Ji4MHqxp/v/9r9ORmKJUuzYMGgRDbUB2QrAWvykyEybANdfA\nTz9BvXpOR2OK2ubN6qjftk0ze43zrMVvHLV8OfTtq+37LOknpho1NMpn7lynIzGFZYnfFFpODvzz\nnyrvnHWW09GY4lKihPptbr5ZfTnGvSzxm0J75BGoWhX+8x+nIzHF7frrITdXm+cY94qXSp3V+F1q\n82Y44QTbcvPfAAAScElEQVRYsMC26vOKsWPhvvu0mU7p0k5H421W4zcxt2MHXHIJ3HCDJX0vuegi\nSEmxNXzczFr8Jir79sF552m53qFDoaQ1ITxl5UpN6lq5EqpUcToa77IWv4mZDRu0oUrFivDyy5b0\nvahBA+jSBT75xOlITDSsxW+OyL59GrnTqRM89pjVeL3sp5/g4oth8WJItjV3HWEtflPs/vgDTj9d\nszifeMKSvtedfro2apkwwelIzJGyxG8KZP16XdrfdJPW1y9VyumITDzo08f25XUjS/wmX4sXQ5s2\ncNtt2kbRpuuboN69Ydky257RbSzxm8OaO1d13LvugnvucToaE29Kl4Z+/eDjj52OxBwJS/wmosxM\ndd6eey48+KDtmWsO7eKLNanLxme4hyV+c5B9+2DgQC20Nns2/Pyz1uEx5lBatYK9e+G335yOxBSU\nbaRm/rJ/v2ZlliunhF+/vtMRGTcoUUKNhbvvhq+/djoaUxDRtPiTgS8AHzAdaBe4vzEwEZgCfAME\n5/MNAn4CpgFtChGrKWZPPaUSz6hR3kn6s2ZBhw5wzjnw449OR+Net92mQQBTpzodiSmIaMZnpAHb\n0J67TYGPgNbAJOBeYBZwKbAByAYGA+egzdZHA20jPKdN4HJQRgbccosm5Eya5I11d/x+DUNMS4Mh\nQ7Ti5P/+ByeeCCNHQlKS0xG6z9tvw3vvweTJTkfiHbGcwDUEeCNwuzSQCZQDagAXoQ3Yz0Ct/A7A\nt4HHrkGlpWpR/ExTTH75BU47DSpU0AgeLyT9nBy49lp4/XWYPh2uvBKuvhqWLtXvf+21TkfoTn37\najmPceOcjsTkJ7/E3x9YkOdoDGQBtYD3gftQMj8JlXo6ozLPNUASkBH2fLtQqcg4LDcX7rxTC63d\ney+89prW3kl0mZlw6aWwdSvMmAGNG4e+VqYMvPIKzJ8PEyc6F6NbHXUUPPecrpzsAj6+5de5Ozxw\n5NUClXjuBKYC5VFSnxL4+pdAV2ARSv5BScCOSD8oLS3tr9upqamkpqbmF7uJ0urV2hu3VCn4/Xdt\nouIFixfDVVdpRdF33om85ETZshrGOnCgTgyVKsU8TFc791y44w7V+jt2dDqaxOPz+fD5fIV+nmhq\n/M2Az4Be6AogaDZwO/AjKgctQeWep9FJoC4wDjg1wnNajT9GcnM1C/eii9Qy88rSC6++qt/3kUfg\nxhsPP/vY79f2gkuXwldf6UrAFNzQoeorGj3a6UgSX7Q1/mgS/xjgZGBV4PMdQM/AfUPRVcQKVOrZ\nj0b1nIfKSgPRSKC8LPHHQE4O/PvfSmjff++d5ZQfeQQ++khrDB1/fMG+JzcXunXTWjTXX1+88SWa\n3bs1KmzOHC3fbIpPLBN/cbDEX8z8fnW+bd6s4ZpeKWE88wwMGwY+H9SqdWTf++GHWorAOiuP3F13\nqaHxwgtOR5LYLPGbw3rkEV16z5gB5cs7HU1s+HyadTx7dnSjlbZvV+fv3LnemddQVDZtgmbNYN48\nzQI3xcPW4zeHNG4cvPsufPONd5J+RoaGaL71VvRDVKtUUWns/vuLNjYvSEmBAQPU4DDxx1r8CW7z\nZm2Y8fLL0KOH09HEzt1363d/553CPc+uXdC6tTqG+/YtktA8Y/t2jaCaPh2aNHE6msRkpR7zN9nZ\ncPbZWo7g4YedjiZ23npLiXrOnCOv60fy22/QubP6Rjp1Kvzzecmjj2rntg8/dDqSxGSJ3xzE79c6\n6Xv2wKefemcEz6uvalvI775Ta7OoTJqkTUfGjYN27fJ/vJFdu9TanzgRWrRwOprEY4nf/MXvh/79\nNQN1yhRvzMgFeP55jSL5/nto1Kjon3/8eLjhBi3sduyxRf/8iWrIEL0Ox4xxOpLEY4nfAEr6TzwB\nn3yi2qoXkn5ODjz+OLz/vlrmxTmK5IkntOnIlCma5Wvyl5WlVv+oUepvMkXHRvUYAIYPhw8+0IxT\nLyT9yZOheXMtqTxlSvEPHbz3XrX2b721eH9OIilXTn0uDzzgdCQmyFr8CWTdOjjzTA3d9MJSR9u3\naxnlN97QEhSxsmuX6vzBzedN/nJy9L968011lJuiYaUej1u3Drp00ZLCd9/tdDTFb98+Tc6qUUMd\nurG2ZIk2cPnyS2gbaYcJ8zcjRmj102nTDr9Wkik4K/V42KZNSkJeSfp792qD75wcLQPshKZNtRzE\nHXfYEsQF1aePJtaNH+90JCZezrvW4o/SgQNw3XWQnOyNdVH274dLLtHv++67WgPeKbm5WpbgxReh\ne3fn4nCTL7/UPhALFtiqp0XBWvwe9dBDsGgRDBrkdCTFz+9Xp2pOjmbkOpn0QUtaP/uslnDes8fZ\nWNziggs0wmfIEKcj8TZr8buY369VNhcs8Mbyt6+9pnr+1Knxtbro1VdrBJUTfQ1utGyZhnUuXgzV\nqzsdjbtZi9+Dpk2DunW9sXJkRoauakaMiK+kD/DSS5op/MEHTkfiDo0bq1xnJ0rnWIvfpQ4c0E5S\npUp54w304IOwciW8957TkUQ2d672L167NvKWjuZgCxdqWOeff3pnxdjiYMM5PebeezVh6auvtHxw\nIguWBuJ9R6eOHbVb19VXOx2JO/TqpR3RHn3U6UjcK5aJPxkYgTZOLwPcAcwE2gPPAn7gO+B/gccP\nAs5H2zAORHvz5mWJ/wikp6uDbP78xF8zJicH2rfXJun/+Y/T0RzenDnabPzLL21pgoLYuBFOPVUL\n39lciOjEssZ/OzARSAX6oX12QUm/H3BG4GvNgVZAR+B0oHfYY00hjB2r5ZYTPemD6vo1arhjiYTW\nrTXa6MIL1f9iDq9WLQ2FveYaneBN7EST+IcAbwRulwYyA7czgWroKqAcauF3AL4NfH0N2oi9WrTB\nGtX2hw6Ff/zD6UiK34wZSqRvv+2emZ49emixuJ49NczWHN7ll6uzftIkpyPxlvwSf39gQZ6jMZAF\n1ALeB+4LPPYZ4EvgD2A1sBiVgzLCnm8XKhWZKL31lha96t3b6UiK1759WgL5+eehZk2nozky3btr\nFc8ePdTZaw7viiu0Z4SJnfymwAwPHHm1AD4C7gSmAuWBF4ETgY3AU4GvZaDkH5QE7Ij0g9LS0v66\nnZqaSqoXVhk7QsuXw333ab15t7SAozV4MDRsqA5AN+rfX4vInX02/PBD0ewElqguvxxOOUWTuuJt\nqG688fl8+Hy+Qj9PNOmjGfAZ0AtdAQBUBBaiun4G6geoFnjc00BXoC4wDjg1wnNa524BPPgg7Nih\numgiW7JEq4zOnVv8yywXt7Q0dV6OHw+1azsdTfy65hqN2HroIacjcZdYjuoZA5wMrAp8vgPoCfRB\nCX8vsB119O5Eo3rOQ2WlgcD0CM9piT8f27dr6Nv48dCmjdPRFB+/X+O7e/bUssdu5/fDI49oOeL3\n3/fGctnRWLlSnePLliX+8OSiZOP4E9wTT8Cvv8LHHzsdSfEaPBhGjlTHbqlSTkdTdL7+WmP8+/TR\nuPVy5ZyOKP506qQNW7p0cToS97AlGxLYb7/BY4/BPfc4HUnxGjJE6/GMGpVYSR80q/fXX9WybdMG\ntmxxOqL406yZZvSa4meJ3wU++USrP+6I2C2eGF56CV5+WVspur2ufyjVq+tq5tJLlfzXrHE6ovjS\nrBn88YfTUXiDJf44l5sbmtLeqZOzsRSXTz6Bp58u/o3S40GJEurAvP12ze618eshTZqoxm+KnyX+\nODd5cuj2VVdpbZ5EMmKEZuWOH++NVUaDbrtNk9Muv1yL7FkXF5Qtq412TPGzxB/nTjghNBLks89U\nJ96719GQisyTT6ozb9IkOPlkp6OJvW7d4McfNSnv/PNh/XqnIzJeYaN6XCI9HV5/XS3+X37R4lbH\nHw+NGh18VK/ujsldzz2njtwpU2x8e04O3HWXRjLNmuV0NM6ZPBkefvjgq1xzeDac00N27YLZszWT\nd8WKg4/sbCX/5GTNggweKSmqn9erp8XdkpMhKQmOPlpHLLcxfO01eOopzWitWzd2PzeeZWXBSSfB\n449rCQMvssR/5CzxGwB27oRt2/QxI0PHzp1aAnf1ah3r1um+3btDR5kyoRPB4T6WKaMritKloXLl\n0FGliq5AqlY9fHzvvgsPPKCWfqNGsfmbuMWcOXDxxVqA78orNfLHDVdv0crJ0ety0ybV9r/4Qg2a\nCROcjsw9LPGbqPn9kJmpK4nduw//cd8+fU92tk4eO3boSE/XapQpKVqc7IILtDFJmTKhn/PVV1rD\nZvJk9V2Yv1u3Dl55RXMZypeHzz/XmkXxbv9+vT527Qo1Ntav15DVnTs1Om3zZv1+69fr2LZNC/Cl\npKgh0aCB+nyaN3f6t3EPS/zGcX6/Nof58ksdCxaorFS+vN74CxaEHmcOz+/X8tuPPaZlqbt1g5LF\nPBTD79cJPngyDz+2b9fHLVtCyXvbtlCiz8rSFWF4ebF2bZXyKlfWhLyaNaFOHTjmGH2tZs3Em6gX\na5b4TdzJyFCLL3iVsHSpRu9Ya7/gxo9XaWz3bhg+XFdR0fD7VVJZskT/h7VrQy3vYCLfulUn6fAS\nXt6jenUl7jp1oFq1UJKvUCGxy1LxyhK/MQlszBgYMECbzXfvHvkxfr9a4cuXayLUsmWweLGS/ZIl\nKrs1baqJUnXrhhJ48KhRwzaKdxtL/MYkuG++gZtu0tr1vXtrwtv06Vq+etEiJXyA446Dxo11HH+8\nkn3Tpvl3vBv3scRvjAfs2QMffKB9l7/6SuWXIUO0zs1xxym5W8nFOyzxG+Mxe/dqeefi7vQ18csS\nvzHGeEws1+OvCIwFpgATgTqB+9sBM4EfgQfDHj8I+AmYBiTw3lHGGOMO0ST+64HZQCdgBHB34P7X\n0PaLHYDT0d66rYCOgc97A0MLGW9cKorNj53i5tjB4neaxe9O0ST+F4DHA7fro/11k4AywJ+B+78F\nugDtgeAE7DXAUWgT9oTi5hePm2MHi99pFr875bc0V3+0QXq4fsAc4HugOdANSAYywh6zC2gEZAHp\nee5PznOfMcaYGMov8Q8PHJGcAxwPjAdaolZ/UCVgB7Avz/1JgfuNMca4yH1A38DtY4FFgdvzUCu/\nBDoZtEE1/u8C99UDfjnEcy4D/HbYYYcddhzREbPNKmsCXwOTgR+AMwL3nw7MAGYBj4Q9fhAa7TML\nODNWQRpjjDHGGGOMMcaY4lIaeB+Vhn4CLkTj/H9AJaNvUAkJ4AY0T2AG0CPmkUYWKf6gfwLTwz6P\nt/gjxV6T0CS8H4AGgcfGW+wQOf4T0ETBqWjwQXDmYjzGXwp4i1C8JwGNA5//ALyC++J303s3UvxB\n8f7ehcjxu+b92w94LnC7CrAavWhODtz3L+BZIAWYj97slQK3y+C8fhwc/6rA7Zao8zr44qlF/MXf\nj7//7d8GLgvclwpcQHzGDpHj/wg4N3DfCOI7/ouBYYHbndAbdiya2AjwKnAJ7orfh3veu3njHxO4\n7Yb3LkT++xf6/Rur5Z1GElrGoSSQg2byzg/cVxrIBNqipR1y0LyAZYReYE6KFH9V4DE0zyHYYovH\n+CPF3h6oi5bcuBKYRHzGDpHjz0QTAUugIcL7iN/4xwIDArcboAmPrVFLDTRQogsaBeeG+LcBV+Ce\n926kv3813PHehcjxF/r9G6vEvwfYjd6kI4H7gU2Br50J/BsYgs5UO8O+Lzjhy2l5438QXX7dEbg/\nKB7jzxv7A4TewF1RC/qewNfjLXaI/Np5Gc0g/wNd9k4hPv/2QbnAOyjmDzh4Ua1gnG6I/0XgQ9z1\n3oWD//4fofKgG967QXlfPw0o5Ps3lgu61kVnpveAjwP3XYEudc9Hs3kz+PuEr+0xjPFwwuNfiuq0\nr6IXUjNUjthJfMYfHvtH6G89LvC1L4DTcM/f/mNU3jkLOBHV/58lfv/2Qf3QhMdhQLmw+4OTHeP5\n7w+KvynwJlABd713IfT3Hwu0wD3v3aB+hF4/23HJ+zcFWAh0DrvvKnS5WyXP4+YDZdHZaiHxUWeL\nFH9QfdSZAqE6WzzFHyn2kejvD3Ab8BTu+tuvRJMHAXqiE0G8xt8XTXoEJfkVaC2rToH7XgN64a74\n++Ke926k+MsGPo/39y5Ejt81798XgPWoQzc48WsbMDfsvkGBx16PJnv9jN7U8SBv/JMJtdoacPDI\ngHiLP2/sk9As6gmoJjie0CVhvMUOkf/2PdCkQB9KovUCj43H+MsDn6By1HQ0KqkJin06asEFSz9u\niP8i1MJ3y3s30t8/qAHx/d6FyPG76f1rjDHGGGOMMcYYY4wxxhhjjDHGGGOMMcYYY4wxxhhjjDHe\n8v+0h8qiKx7ZtgAAAABJRU5ErkJggg==\n"}], "language": "python", "input": ["stickman = np.einsum(\"ij,jk->ik\", A, stickman)\n", "pt.plot(stickman[0], stickman[1])"], "collapsed": false}, {"metadata": {}, "cell_type": "code", "outputs": [], "language": "python", "input": [], "collapsed": false}]}], "nbformat_minor": 0, "nbformat": 3}