# coding: utf-8 # # Matrices for graph traversal # In[1]: import numpy as np # In[182]: n = 5 # Make a sparsely populated random matrix A = np.zeros((n, n)) from random import randrange, uniform for i in range(n*n//2): i, j = randrange(n), randrange(n) w = round(uniform(0, 1), 1) A[i, j] = w A # For a reason that will become clear in a minute, we need the columns of $A$ to be normalized to sum to 1: # In[183]: A_cols = np.sum(A, axis=0) A_cols[A_cols == 0] = 1 A = A/A_cols print(A) print(np.sum(A, axis=0)) # This short piece of code exports the matrix in a format that's readable to the [dot](http://graphviz.org) graph drawing tool. # In[184]: def to_dot(A, vec=None): lines = ['digraph mygraph { size="2,2";'] for i in range(n): for j in range(n): if A[i, j]: lines.append("%d -> %d [label=\"%0.1f\"];" % (j, i, A[i, j])) if vec is not None: for i, vec_i in enumerate(vec): assert 0<=vec_i<=1 lines.append( '%d [style="filled", fillcolor="#ff%02xff"];' % (i, int(255*(1-vec_i)))) lines.append("}") return "\n".join(lines) # See? # In[185]: print(to_dot(A)) # In[186]: get_ipython().magic(u'load_ext gvmagic') # In[187]: get_ipython().magic(u'dotstr to_dot(A)') # Another thing we can do is plot distributions on the graph: # In[188]: d = np.zeros((n,)) d[4] = 1 get_ipython().magic(u'dotstr to_dot(A, d)') # Now, how would we model the spread of this distribution across the graph? # In[189]: d = np.dot(A, d) print(np.sum(d)) get_ipython().magic(u'dotstr to_dot(A, d)') # More questions: # # * How would you find the steady state of this traversal? # * Any predictions about `np.sum(d)`?