import numpy as np
import matplotlib.pyplot as pt
def f(x):
return np.exp(x) - 2
xgrid = np.linspace(-2, 3, 1000)
pt.grid()
pt.plot(xgrid, f(xgrid))
What's the true solution of $f(x)=0$?
xtrue = np.log(2)
print(xtrue)
print(f(xtrue))
Now let's run Newton's method and keep track of the errors:
errors = []
x = 2
xbefore = 3
At each iteration, print the current guess and the error.
slope = (f(x)-f(xbefore))/(x-xbefore)
xbefore = x
x = x - f(x)/slope
print(x)
errors.append(abs(x-xtrue))
print(errors[-1])
for err in errors:
print(err)
# Does not quite double the number of digits each round--unclear.
Let's check:
for i in range(len(errors)-1):
print(errors[i+1]/errors[i]**1.618)