
Floating Point Arithmetic

Want: Something like the real numbers... in a computer

Have: Integers, made of bits

Idea: Keep going down past exponent zero

So:

How should we even represent fractions?

Could store
- a fixed number of bits with exponents >= zero
- a fixed number of bits with exponents < zero

Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1.

What is the smallest number we can represent?

What is the biggest number we can represent?

What's our range then?

not a lot

What happens if we divide the smallest number by 2?

What happens if we multiply the largest number by 2?

Should be able to do better.

Idea: Set a few bits aside to store the largest exponent. How?

This is called fixed-point arithmetic, and it's pretty bad.

How many accurate decimal digits do we have in a number near ?

How many accurate digits do we have in a number near ?

Option (1): Lie (=truncate the number)
Option (2): Error

Option (1): Lie (=round the number back up)
Option (2): Lie (=round the number down to 0)
Option (3): Error

In our 64-bit example:

- 1 bit for sign (+/-)
- 11 bits for largest exponent
- 52 bits for "bits"

This is called "double precision".

What is (very roughly) the smallest number we can represent?

What is (very roughly) the largest number we can represent?

Exponent ranges from
-1022 to 1023

How many accurate decimal digits do we have in the largest
representable number?

How many accurate decimal digits do we have in the smallest
representable number?

So what could possibly go wrong?

Same relative accuracy for numbers of every magnitude: Yay!

How many accurate (binary) digits are there in the above result?

Called "catastrophic cancellation"

Demo: Floating point vs. program logic

Demo: Catastrophic Cancellation

Demo: Picking apart a floating point number

