

 $\left| \right|$

Want: Something like the real numbers... in a computer

Have: Integers, made of bits

 $23 = 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$

How should we even represent fractions?

Idea: Keep going down past exponent zero

$$23.625 = 1.24 + 0.2^{3} + 1.2^{2} + 1.2^{1} + 1.2^{0} + 1.2^{-1} + 0.2^{-2} + 1.2^{-3}$$

So: Could store - a fixed number of bits with exponents >= zero - a fixed number of bits with exponents < zero

Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1.

What is the smallest number we can represent?

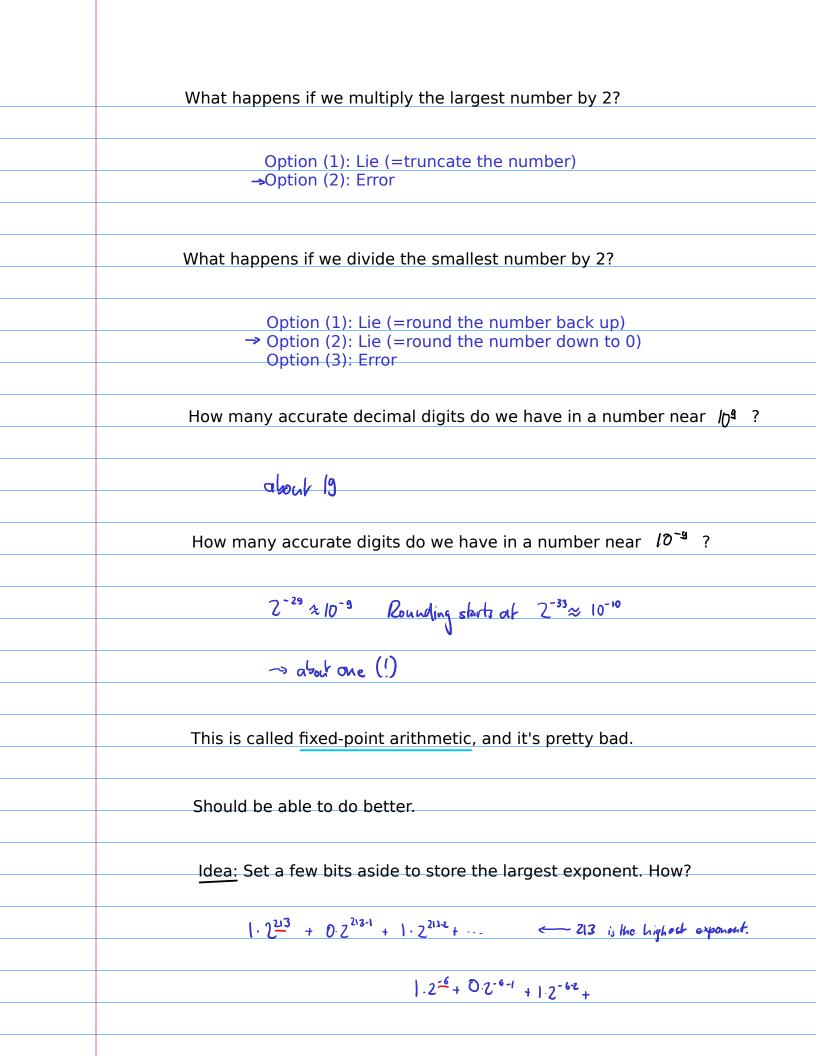
2-32

What is the biggest number we can represent?

 $2^{31}+2^{30}+\cdots+2^{1}+2^{0}+2^{-1}+\cdots+2^{-32}$

What's our range then?

~ (0⁻¹⁰... 10⁹ ← not a lot



	What is the:		
2°	exponent?	significand ²	value?
Ĵ,	1		
101011	7	(1.01011) ₂ = 1.34 375	1.31375.27
101011	5	— h —	1.34375.2
101011	Ø	<u> </u>	1.34375+2
101011	-1	<u> </u>	1. 34 575 · 2"
101011	~3	— A —	1.34375. Z ⁻³
In our 64-bit example:	\frown	Exponent range	es from
)	-1022 to 1023	
 - 1 bit for sign (+/-) - 11 bits for largest exponent			
- 52 bits for "bits"			
 This is called "double precision".			
What is (very roughly) the smallest n	umber we ca	an represent?	
		denormals	
2 ⁻¹⁰²² ~ 10 ⁻³⁰⁸	-	"implicit one" "missing.exporentes"	
		"missing exponents"	
What is (very roughly) the largest nu	mber we cai	n represent?	
2 ¹⁰²³ ~ 10 ³⁰⁷			
How many accurate decimal digits d representable number?	o we have ir	n the largest	
Rounding starts at 21023-52	∞ (0 ²⁹²		
Rounding starts at 21023-52 307-292 × 15 dig	lits		

How many accurate decimal digits do we have in the smallest representable number? Rounding starts at 2-1022-52 ~ 10-324 - 208 - (-324) ~ 15 digits Same relative accuracy for numbers of every magnitude: Yay! So what could possibly go wrong? 20 101011 101001 000010777 How many accurate (binary) digits are there in the above result? 2/6 ~ hot good Called "catastrophic cancellation" Demo: Catastrophic Cancellation Demo: Picking apart a floating point number Demo: Floating point vs. program logic