(11) Solving nonlinear equations

Have: $\quad f: \mathbb{R} \rightarrow \mathbb{R}$ function
Want: $\quad x$ sud that $f(x)=y$

Rewrite the problem so that we only need $g(x)=0$. (i.e. no explicit right-hand side)

$$
g(x)=f(x)-y \quad \leadsto f(x)=y \Leftrightarrow g(x)=0 .
$$

What if we know that f is continuous and $f(a) \cdot f(b)<0$?

Can we use this "bracket" to track down the zero?

- Check signs of function values to keep zero in new bracket
- Repeat until bracket small enough (halves in length with each step)

This is called the "bisection method".

Convergence Rates of Iterative Procedures

Consider the "error" in the bisection method in the kith step:

$$
e_{k}=\left|b_{n}-a_{n}\right| \Leftarrow \text { length of the bracket }
$$

What's the error in the next step, relative to e_{k} ?

$$
e_{k+1}=\frac{1}{2} \cdot e_{k}
$$

Generally, error behavior like this is called "linear convergence" ("order 1"):

$$
e_{k+1} \leqslant C \cdot e_{k} \quad \text { with } \quad 0 \leqslant \ll 1
$$

Generally, error behavior like this is called "quadratic convergence" ("order 2"):

$$
e_{k+1} \leqslant C \cdot e_{k}^{2} \quad \text { with } \quad 0 \leqslant c<1
$$

Generally, error behavior like this is called "cubic convergence" ("order 3"):

$$
e_{k+1} \leqslant C e_{k}^{3} \quad \text { with } \quad 0 \leqslant \ll 1
$$

(... and so on) Which of these is fastest? cubic

Rewrite this so that the constant stands on its own, for a general order g :
$C \approx \frac{e_{k+1}}{e_{k}{ }^{q}} \backsim \sim$ Print this, check for constant-ness to see if q-th order!

Do not confuse this with "q-th order" convergence $\sim C \cdot h$ q for a mesh width h !

Suppose X_{k} is our current guess of the zero.

Idea: Build a solvable approximate version of f using

$$
\tilde{f}\left(x_{k}+h\right)=f\left(x_{k}\right)+h f^{\prime}\left(x_{k}\right)
$$

Find the zero of the approximate version.

$$
\text { Solve } \begin{aligned}
0 & \stackrel{!}{=} \tilde{f}\left(x_{k}+h\right) \\
& =f\left(x_{k}\right)+h f^{\prime}\left(x_{k}\right) \\
\leadsto \quad h & =-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
\end{aligned}
$$

$$
\leadsto \quad x_{k+1}=x_{k}+h=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

This is called Newton's method.
Demo: Newton's method
Demo: Convergence of Newton's method

Application: How does a computer find a square root? (-> HW)

Name some downsides of Newton's method.

Convergence only 'near' a zero, not far from it. ("Local", but not "global" convergence)

Need the derivative f^{\prime}, which we may or may not have.
\uparrow Let's try and address this last issue.

Secant Method

How else could we find a line approximating a function?

$$
\text { Use last two guesses: } x_{k} \text { and } x_{k-1}
$$

Estimate the slope of the approximating line:

$$
\frac{l_{\text {sse }}}{R_{\text {un }}}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{n}-x_{k-1}} \approx f^{\prime}\left(x_{n}\right)
$$

Now use this estimate in Newton's method:

$$
\begin{aligned}
x_{k+1}=x_{k}+h & =x_{k}-\frac{f\left(x_{k}\right)}{f\left(x_{k}\right)} \\
& =x_{k}-\frac{f\left(x_{k}\right)}{\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}}
\end{aligned}
$$

Solving systems of nonlinear equations

Let's try to carry over our 1-dimensional ideas.
Let's first get an idea of what behavior can occur.
[Demo: Three quadratic functions]

Based on the demo: Does bisection stand a chance?

Not really--no easy equivalent of 'bracket'.

Let's try Newton's method then. What's the linear approximation of f

10: $\quad \tilde{f}(x+h)=f(x)+f^{\prime}(x) \cdot h \approx f(x+h)$
nD: $\quad \overrightarrow{\tilde{f}}(\vec{x}+\vec{h})=\vec{f}(\vec{x})+J_{f}(\vec{x}) \vec{h} \quad \approx \vec{f}(\vec{x}+\vec{h})$
where $\quad f_{f}(\vec{x})=\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial p_{1}}{\partial x_{n}} \\ \vdots & & & \vdots \\ \vdots & & \vdots \\ \frac{\rho_{f}}{\partial x_{1}} & \cdots & \cdot & \frac{\partial \rho_{n}}{\partial x_{n}}\end{array}\right)$ "Jacobian matrix"

OK, now solve that for h.
a linear system (surprised?)

$$
\begin{array}{rlrl}
\dot{\tilde{f}}(x+h)=\vec{f}(\vec{x})+f_{f}(\vec{x}) \vec{h} \stackrel{!}{=} \overrightarrow{0} & \leadsto & \partial_{f}(\vec{x}) \vec{h} & =-\vec{f}(\vec{x}) \\
& \leadsto \vec{h} & =-f_{f}(\vec{x})^{-1} \vec{f}(\vec{x})
\end{array}
$$

Let's do an example of that:

$$
\begin{aligned}
& f(x, y)=\binom{x+2 y-2}{x^{2}+4 y^{2}-4} \\
& J_{f}(x, y)=\left(\begin{array}{ll}
1 & 2 \\
2 x & 8 y
\end{array}\right)
\end{aligned}
$$

Demo: Newton's method in n dimensions

What are the downsides of this method?

- Local convergence only
- Need the Jacobian

So how about (an n-dimensional analog of) the secant method?

Idea: Find enough information to reconstruct the Jacobian from

So carrying over the secant method to n dimensions is not easy.
It's possible, but beyond the scope of our class.
Here are two starting points to search:

- Broyden's method
- Secant updating methods

Here's one more idea: If we could figure out where the linear approximation in Newton is 'trustworthy', would that buy us anything?

These are called "trust region methods".
They can help make Newton's method a little more robust.

