

Solving systems of nonlinear equa	ations		
		July?	
Want to solve $\vec{k}(\vec{x}) = \vec{0}$.	f : R* →	Me !	
	U		
Let's try to carry over our 1-dimen	sional ideas.		
Let's first get an idea of what beha	avior can occur.		
[Demo: Three quadratic fu	nctions]		
Based on the demo: Does bisection	on stand a chan	ce?	
Not reallyno easy equivale	ent of 'bracket'.		
Let's try Newton's method then. W	/hat's the linear	r approximation c	of ?
 $10: \widehat{f}(x+h) = f(x)$	+ {'(x)·h ≈ f(, x+h)	
$(\ddot{x}) \ddot{\xi} = (\ddot{A} + \ddot{x}) \ddot{\xi} = (\partial u$	+]+() h ~ j	(x+h)	
	Dr.	er l	
where Je (x) -			bian matrix"
		20	
		DXn /	
 OK, now solve that for h.			
		a linear system	
 $\tilde{\tilde{f}}(x+h) = \tilde{f}(\tilde{x}) + \tilde{J}(\tilde{k})\tilde{h} \stackrel{i}{=} \tilde{O}$	~>	ר <u>גוה</u> גנ	٤)
fr fr 01.12 11	~1	ا کو (تا له = - بو له = - کا	/ (x) ⁻¹ Ď(x)
		. 0	
	~?	XR+1 × XR-JR(RK) ⁻¹ Į(x _̃ ,)
		0.	1

So carrying over the secant method to n dimensions is not easy.
It's possible, but beyond the scope of our class.
Here are two starting points to search:
- Broyden's method
- Secant updating methods
Here's one more idea: If we could figure out where the linear approximation
in Newton is 'trustworthy', would that buy us anything?
"trust region"
Ty ET
Xun stop have - never leave the trush region!
Newton step $\vec{x}_{\mu} = \int_{\beta}^{1} (\vec{x}_{\mu}) \vec{y}(x_{\mu})$
These are called "t <u>rust region methods</u> ".
They can help make Newton's method a little more robust.