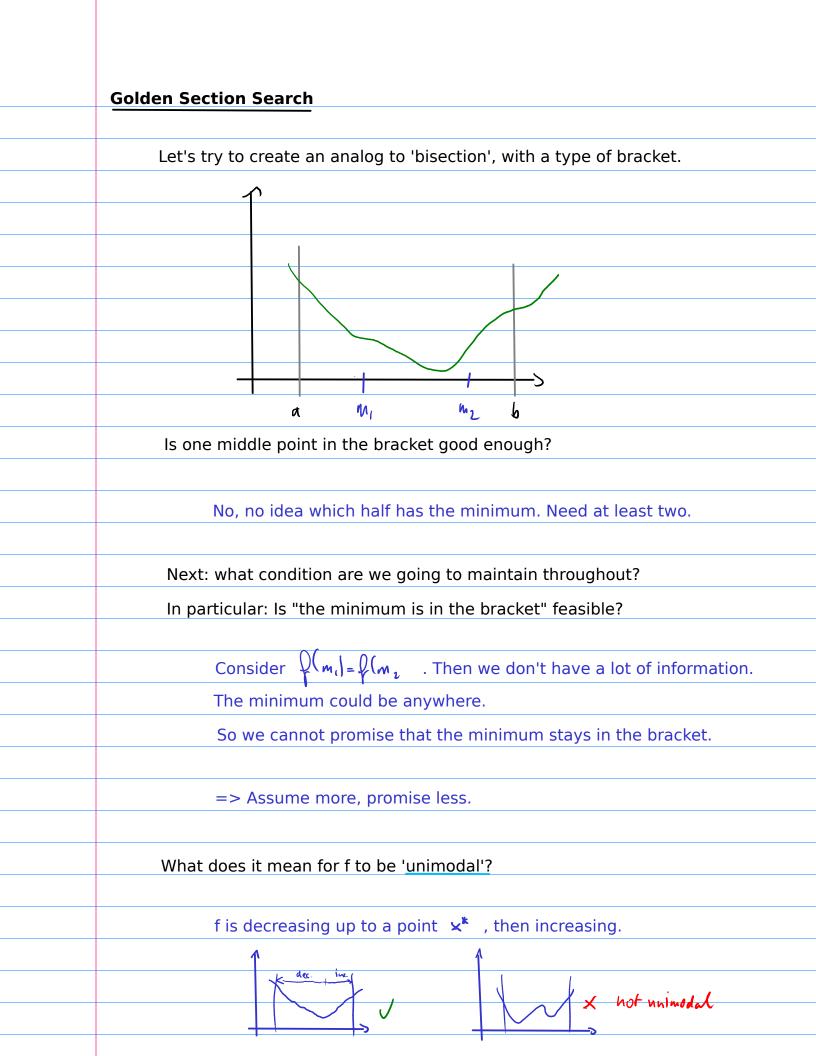
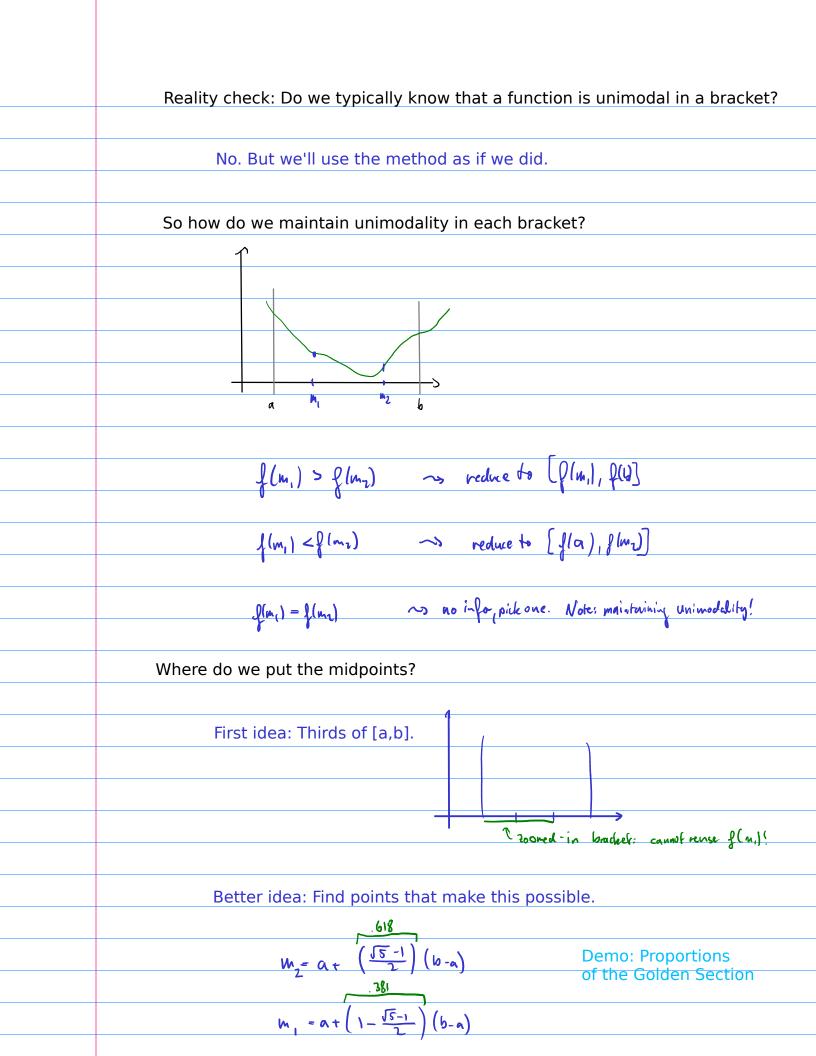
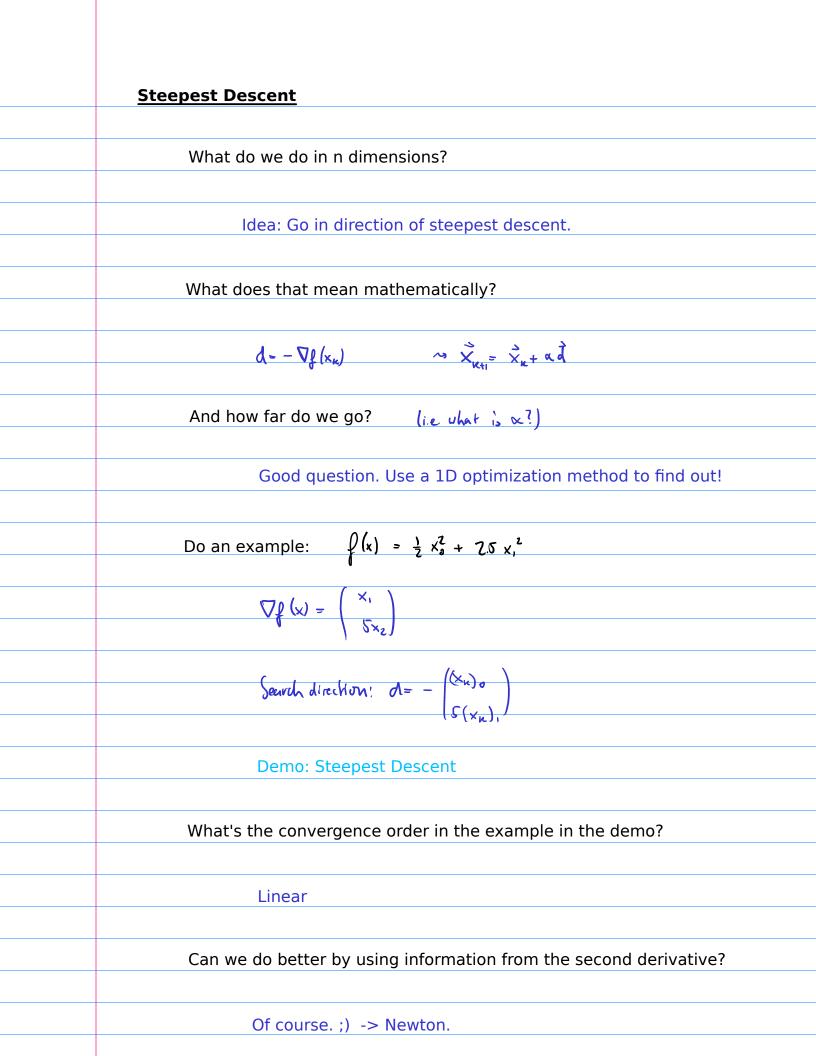


Does that look at all familiar?
Yes, that's just like doing solving $f'(x)=0$ with Newton's method.
So this gets to be called Newton's method, too.
To be precise: <u>Newton's method for optimization.</u>
Demos Neutonia method in 1D
Demo: Newton's method in 1D





What's the convergence order of Golden Section Search?
Linear



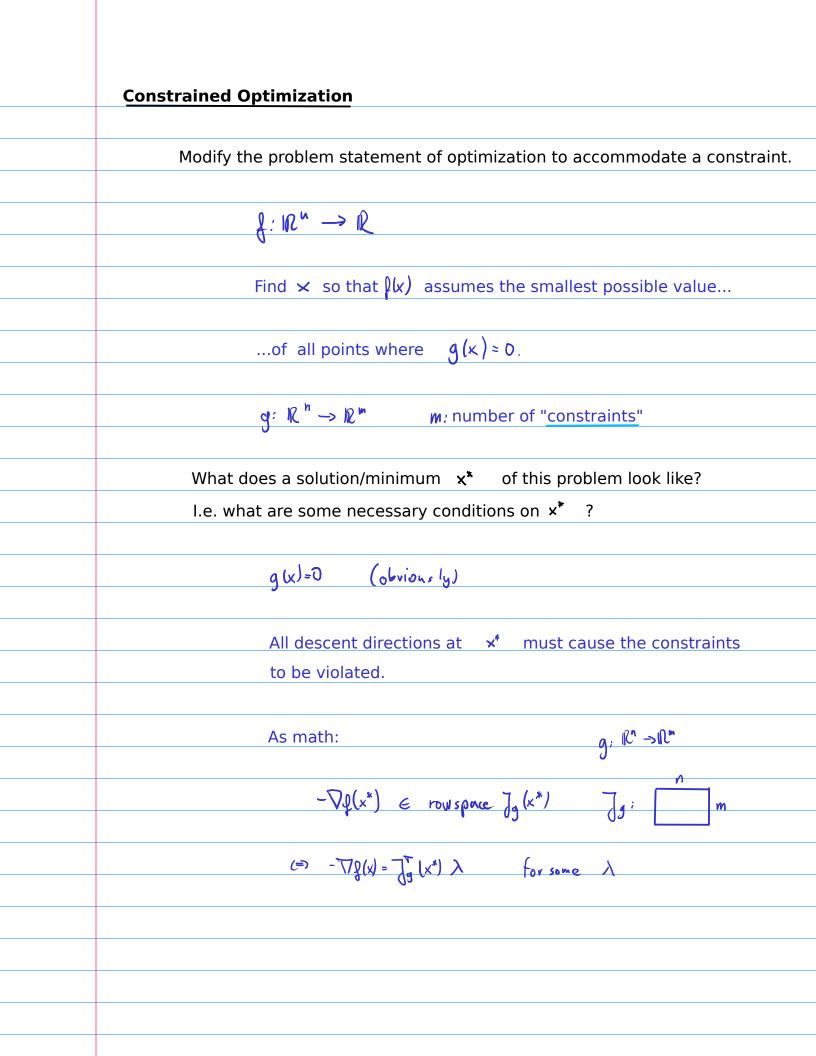
Newton's method in n dimensions

 Step 1: Write down a quadratic approximation
$$\hat{f}$$
 to f at x_{a} .

 $(\nabla): \quad \tilde{\varphi}(x, th) = \hat{\varphi}(x) + \hat{\varphi}'(x) h + \hat{\varphi}'(x) h^{-1} \frac{h^{2}}{2}$
 $(\nabla): \quad \tilde{\varphi}(x, th) = \hat{\varphi}(x) + \hat{\varphi}'(x) h + \hat{\varphi}'(x) h^{-1} \frac{h^{2}}{2}$
 $(\nabla): \quad \tilde{\varphi}(x, th) = \hat{\varphi}(x) + \hat{\varphi}(x) h^{-1} \hat{\varphi}'(x) h^{-1} \frac{h^{2}}{2}$
 $(\nabla): \quad \tilde{\varphi}(x, th) = \hat{\varphi}(x) + \hat{\varphi}(x) h^{-1} \hat{\varphi}'(x) h^{-1} \frac{h^{2}}{2} h^{-1} h^{2} (x) h^{-1} \frac{h^{2}}{2} h^{-1} h^{2} h^{-1} h^{-1} h^{2} h^{-1} h^{-1} h^{2} h^{-1} h^{-1} h^{2} h^{-1} h^{-1}$

Do an example: $f(x) = \frac{1}{2} x_0^2 + \frac{7}{2} 5 x_1^2$ $\nabla g(x) = \begin{pmatrix} x_0 \\ S_{x_1} \end{pmatrix}$ $H_{\sharp}(x) = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ Demo: Newton's method in n dimensions

What if we don't even have one derivative, let alone two?!
Options:
- Nelder-Mead Method ("Amoeba method")
S(x,)
How many points in n dim?
$f(x_{i}) = f(x_{i}) \leq f(x_{1}) \leq f(x_{2})$
$f(x_1) \qquad \qquad f(x_1) \leq f(x_2)$
Demo: Nelder-Mead
- Secant updating methods (for example "BFGS")
Broyden
Fletcher Goldfarb
Shanno
The "trust region" idea applies in optimization, too!
(see end of Nonlinear Equations chapter)



q=0 $-\nabla f = \nabla g \lambda - \nabla g^{T} \lambda$ = JTX for some h Df ⊥ {g=0} atx*! 17g Miracle: Reduce constrained to un-constrained optimization. Define a new function of more unknowns: x and λ , $\lambda \in \mathbb{R}^m$ $\mathcal{L}(x, \lambda) := f(x) + g(x)^{T} \lambda$ What are the necessary conditions for an un-constrained minimum of ℓ ? $\nabla \mathcal{X} = \begin{pmatrix} \nabla_{x} & \mathcal{X} \\ \nabla_{\lambda} & \mathcal{Y} \end{pmatrix} = \begin{pmatrix} \nabla \mathcal{Y}(x) + \mathcal{J}_{g}(x)^{\top} \\ \mathcal{Y}(x) \end{pmatrix} = \mathcal{O}$ exactly the necessary conditions for the constrained minimum of f! Using Newton's method on Xgets a new name: "Sequential Quadratic Programming"