Numerical Methods (CS 357)

Worksheet

Problem 1. Value of the condition number

Consider the matrix

$$
A=\left(\begin{array}{cc}
5 & 0 \\
0 & 20
\end{array}\right) .
$$

What's the value of the 2-norm-based condition number of A ?

Problem 2. Nullspace Finding

Given a LU factorization $P A=L U$ of a matrix A, we know that the nullspace is preserved by this facatorization as $N(P A)=N(U)$. Which of the following are true statements?
(A) The nullspace of A can be "read off" from U with little (at most linear in n) computational work.
(B) Having an LU factorization of A does not help significantly with computing the nullspace of A.
(C) Computing the nullspace is inherently brittle because of rounding error.
(D) Matrices in echelon form do not have a nullspace.

Problem 3. Nullspace Finding II

What's the nullspace of

$$
U^{T}=\left[\begin{array}{lllll}
* & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & * & 0 & 0 \\
* & * & * & 0 & 0 \\
* & * & * & 0 & 0
\end{array}\right]
$$

irrespective of the values of the $*$ entries?
(A) Unable to determine
(B) $N\left(U^{T}\right)=\left\{[0,0,0,1,0]^{T},[0,0,0,0,1]^{T}\right\}$
(C) $N\left(U^{T}\right)=\operatorname{span}\left\{[0,0,0,0,1,0]^{T},[0,0,0,0,0,1]^{T}\right\}$
(D) $N\left(U^{T}\right)=\operatorname{span}\left\{[0,0,0,1,0]^{T},[0,0,0,0,1]^{T}\right\}$
(E) $N\left(U^{T}\right)=\operatorname{span}\left\{[0,0,0,1,1]^{T}\right\}$

