Problem 1. Value of the condition number

Consider the matrix

\[
A = \begin{pmatrix} 5 & 0 \\ 0 & 20 \end{pmatrix}.
\]

What’s the value of the 2-norm-based condition number of \(A \)?

Problem 2. Nullspace Finding

Given a LU factorization \(PA = LU \) of a matrix \(A \), we know that the nullspace is preserved by this factorization as \(N(PA) = N(U) \). Which of the following are true statements?

(A) The nullspace of \(A \) can be “read off” from \(U \) with little (at most linear in \(n \)) computational work.

(B) Having an LU factorization of \(A \) does not help significantly with computing the nullspace of \(A \).

(C) Computing the nullspace is inherently brittle because of rounding error.

(D) Matrices in echelon form do not have a nullspace.

Problem 3. Nullspace Finding II

What’s the nullspace of

\[
U^T = \begin{bmatrix}
* & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 \\
* & * & * & 0 & 0 \\
* & * & * & * & 0 \\
* & * & * & * & 0
\end{bmatrix}
\]

irrespective of the values of the \(* \) entries?
(A) Unable to determine

(B) $N(U^T) = \{ [0, 0, 0, 1]^T, [0, 0, 0, 1]^T \}$

(C) $N(U^T) = \text{span}\{ [0, 0, 0, 1]^T, [0, 0, 0, 1]^T \}$

(D) $N(U^T) = \text{span}\{ [0, 0, 1, 0]^T, [0, 0, 0, 1]^T \}$

(E) $N(U^T) = \text{span}\{ [0, 0, 1, 1]^T \}$