Numerical Methods (CS 357)

Worksheet

Problem 1. Value of the condition number

Consider the matrix

$$
A=\left(\begin{array}{cc}
5 & 0 \\
0 & 20
\end{array}\right)
$$

What's the value of the 2-norm-based condition number of A ?

Problem 2. Problems with Rank Finding

Which of the following is a problem with finding the rank of a number of vectors computationally using pivoted Gaussian elimination?
(A) Infeasibly expensive (in terms of computational work)
(B) May break down if near-zeros occur in input
(C) Answer brittle/poorly defined due to rounding errors
(D) Only works for 'square' sets of vectors, i.e. sets of n vectors of length n

Problem 3. Computational expense of solving many linear systems

Suppose you have both the inverse A^{-1} and a $P L U$ factorization of an $n \times n$ matrix. What is true about the computational expense of finding the solution of k linear systems $A x_{i}=b_{i}(i=1, \ldots, k)$ using both of these methods?
(A) Using the inverse is asymptotically cheaper (n^{2} vs n^{3})
(B) Asymptotically, the two methods have the same computational cost (n^{2} and n^{2})
(C) Asymptotically, the two methods have the same computational cost (n^{3} and n^{3})
(D) Using LU is asymptotically cheaper (n^{3} vs n^{2})

Problem 4. Nullspace Finding

Given a LU factorization $P A=L U$ of a matrix A, we know that the nullspace is preserved by this facatorization as $N(P A)=N(U)$. Which of the following are true statements?
(A) The nullspace of A can be "read off" from U with little (at most linear in n) computational work.
(B) Having an LU factorization of A does not help significantly with computing the nullspace of A.
(C) Computing the nullspace is inherently brittle because of rounding error.
(D) Matrices in echelon form do not have a nullspace.

