Problem 1. Least-squares residual

Given a QR factorization A = QR with Q = I, what is the square of the 2-norm of the residual of solving the least-squares problem $Ax \approx b$ going to be if

$$b = \begin{bmatrix} 3\\1\\4\\2 \end{bmatrix}, \qquad R = \begin{bmatrix} 5 & 2\\0 & 5\\0 & 0\\0 & 0 \end{bmatrix}?$$

Problem 2. Least-squares residual

Let x be the solution to the linear least squares problem $A x \simeq b$, where

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \\ 1 & 0 \end{bmatrix}.$$

Let r = b - Ax be the corresponding residual vector. Which of the following vectors is a possible value for r?

$(A) \begin{bmatrix} 3\\0\\-4\\3 \end{bmatrix}$		
$(B) \begin{bmatrix} 0\\20\\-10\\0 \end{bmatrix}$		
(B) $\begin{bmatrix} 0\\20\\-10\\0 \end{bmatrix}$ (C) $\begin{bmatrix} 1\\2\\3\\-4 \end{bmatrix}$		
$(D) \begin{bmatrix} 1\\ 2\\ 4\\ -1 \end{bmatrix}$		

Problem 3. Least-squares residual

Given a QR factorization A = QR with Q = I, what is the last component of the least-squares solution x in min $||Ax - b||_2$ going to be if

$$b = \begin{bmatrix} 3\\1\\4\\2 \end{bmatrix}, \qquad R = \begin{bmatrix} 5 & 2\\0 & 5\\0 & 0\\0 & 0 \end{bmatrix}?$$