Numerical Methods (CS 357)

Worksheet

Problem 1. Linearly independent vectors

Consider this set S of vectors

Which vector can you add to S and have the resulting set of vectors be linearly independent?
(A) None
(B) $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$
(C) $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(D) $\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$

Problem 2. Guessing Dimensions

Suppose I have three vectors v_{1}, v_{2}, v_{3}.
What are possible values of

$$
\operatorname{dim}\left(\operatorname{span}\left(\left\{v_{1}+v_{2},-v_{1}-v_{2}, 0 v_{3}\right\}\right)\right) ?
$$

(A) 0 or 1
(B) 0,1 , or 3
(C) 1 or 3
(D) 0 or 2
(E) 0,1 , or 2

Problem 3. Building a basis

Suppose I have a basis of \mathbb{R}^{3}. Which of the following procedures reliably yields a basis of \mathbb{R}^{4} ? (Several choices could be correct.)
(A) Add a one as the last coordinate to each vector, e.g. taking $(3,4,7)$, to $(3,4,7,1)$.
(B) Add a one as the last coordinate to each vector, and add $(0,0,0,1)$ as an additional vector.
(C) Add a one as the last coordinate to each vector, and add ($1,0,0,0$) as an additional vector.
(D) Add a zero as the last coordinate to each vector, e.g. taking $(3,4,7)$, to $(3,4,7,0)$.

Problem 4. Dimension of the Space of Images

What's the dimension of the space of all 100×100 gray scale images?
(A) 10,000
(B) 100
(C) However many gray scale levels there are
(D) 0

