Problem 1. Equation of a plane

The (non-unit-length) normal

\[n = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \]

of a plane \(P \) is given. In addition, it is known that the point

\[p = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \]

is on the plane. What is the value \(\alpha \) on the right hand side of the point-normal equation \(n \cdot x = \alpha \) for \(P \)?

Problem 2. Find an orthogonal vector

Given

\[x = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \]

find \(y_3 \) in

\[y = \begin{bmatrix} -1 \\ 1 \\ y_3 \end{bmatrix} \]

so that \(x \perp y \).

Problem 3. Orthogonalization step

Given two vectors \(x \) and \(y \), which of the following makes \(x \perp y' \)?
(A) \(y' = y - \frac{(x,y)}{(x,x)} x \)

(B) \(y' = y - \frac{(x,y)}{(y,x)} x \)

(C) \(y' = y - \frac{(x,y)}{(y,.x)} y \)

(D) \(y' = y - \frac{(x,y)}{(y,y)} y \)

(E) \(y' = y - \frac{(x,y)}{(y,y)} x \)