Numerical Methods (CS 357)

Worksheet

Problem 1. Equation of a plane

The (non-unit-length) normal

$$
n=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

of a plane P is given. In addition, it is known that the point

$$
p=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

is on the plane. What is the value α on the right hand side of the point-normal equation $n \cdot x=\alpha$ for P ?

Problem 2. Find an orthogonal vector

Given

$$
x=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],
$$

find y_{3} in

$$
y=\left[\begin{array}{c}
-1 \\
1 \\
y_{3}
\end{array}\right]
$$

so that $x \perp y$.

Problem 3. Orthogonalization step

Given two vectors x and y, which of the following makes $x \perp y^{\prime}$?
(A) $y^{\prime}=y-\frac{(x, y)}{(x, x)} x$
(B) $y^{\prime}=y-\frac{(x, y)}{(y, x)} x$
(C) $y^{\prime}=y-\frac{(x, y)}{(y, x)} y$
(D) $y^{\prime}=y-\frac{(x, y)}{(y, y)} y$
(E) $y^{\prime}=y-\frac{(x, y)}{(y, y)} x$

