Numerical Methods (CS 357) Worksheet

Problem 1. Permutation Matrices

Create a permutation P matrix that takes the vector $x = [0, 1, 2, 3, 4]^T$ to Px = [1, 3, 4, 0, 2].

import numpy as np
P = np.zeros((5,5))
P[,0] = 1
P[,1] = 1
P[,2] = 1
P[,3] = 1
P[,4] = 1

print(P.dot(x))

Problem 2. Pivoted LU

Factor the matrix

$$A = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 1 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$

into a permutation matrix P, a lower triangular matrix L, and an upper triangular matrix U. Here are a few reminders about the process (so that you don't have to go look these up):

• Original factorization:
$$M_2P_2M_1P(A = A)$$

• $L_2 = M_2$
• $L_1 = P_2M_1P_2^{-1}$
• $L = \frac{L_1^{-1}L_2^{-1}}{L_2}$
• $P = P_2P_1$
import numpy as np
 $P = np.zeros((3))$, dtype=np.float64) $M_1 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 3 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} L = L_1^{-1}L_2^{-1} \\ 0 & 2 & 1 \end{pmatrix}$
 $P = np.zeros((3))$, dtype=np.float64) $M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $P_2M_1P(A = \begin{pmatrix} 2 & 4 & 4 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix}$
 $P = np.zeros((3))$, $dtype=np.float64)$ $M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $P_2M_1P(A = \begin{pmatrix} 2 & 4 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $P_2M_1P(A = \begin{pmatrix} 2 & 4 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_1$
 $P_1 = p_2 P_1$
 $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $P_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_1$
 $P_1 = p_2 P_1$
 $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_2$
 $P_1 = p_2 P_1$
 $P_1 = p_2 P_1$
 $P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_2$
 $P_1 = p_2 P_1$
 $P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_2$
 $P_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \int_{C} \frac{1}{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 $P = p_2 P_2$
 $P_1 = p_2 P_1$
 $P = p_2 P_2$
 $P_1 = p_2 P_1$
 $P = p_2 P_1$
 $P = p_2 P_1$
 $P = p_2 P_1$
 $P = p_2 P_2$
 $P = p_2 P_1$
 $P = p_2 P_1$

print(P.dot(A)-L.dot(U))