(ψ) **Applications of LU** (1) Solve linear equations. How? PA=LU ~> A=P"LU Ax-b ~ RRCU×=Pb/P. LUx = Pb -> use Fur subst to y find y Ux=y -> use bw subst to Find, 217-333-8165 (2) Solve a matrix equation. How? example $\sim s$ AX = I $A \times = B$ hore; X in verse Assume: A, X, B square columns of B: b_1, b_2 unkown columns of X: x_{1}, x_{2}, \dots Solve Ax, = b, for x, known Ax2= bz tov Xn. $PA = CM \leftarrow cost: O(n^3)$ $+ N(jw + bw subol) \subset O(n^3)$

(3) Find row echelon form $M_{3} P_{3} M_{1} P_{2} M_{1} P_{1}$ $-3L_2L_1P_3P_2P_1$ $\mathcal{L}_{2} = \mathcal{P}_{2} \mathcal{M} \mathcal{P}_{3}^{-1}$ So we can get an invertible matrix M so that MA = U upper echelon form PA = U not upper echelon form $A = M^{-1}U$

Suppose we take that into account. How would we compute the rank?
To compute the rank, find the row echelon form
and test the bottom rows for having a norm greater or
or equal to a toleranceand then only consider rows with
norm greater than the tolerance "non-zero."
Lesson: When finding the rank computationally, you *must*
specify a tolerance.

(6) Finding the nullspace of a matrix A

The 'linear algebra way' of talking about "angle" and "similarity" between two vectors is called "inner product". We'll define this next.

So, what is an inner product?

Can you give an example?
 le enveld inner product also Illineerll in the second eroundert?
is any old inner product also linear in the second argument?
Do inner products relate to norms at all?

Tell me about orthogonality.

What's an orthogonal basis? What's an orthonormal basis (or "ONB")? For some given vector \vec{x} , how do I find coefficients with respect to an ONB? $\dot{x} = \dot{b}_1 + \dot{b}_2 + \dot{b}_3 + \cdots + \dot{b}_n$ Can we build a matrix that computes those coefficients for us?

What else is true for a orthogonal matrix Q?
What if Q contains a few zero columns instead of orthonormal vectors?

Orthonormal vectors seem very useful. How can we make more than two?