
In what way can eigenvalue computation be applied to Markov chains?
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Markov property:

The probability distribution
of the next state only depends
on the *current* state
(and not anything longer
ago).

Rewrite the state graph as a matrix: The columns
(= the probabilities in
the current state)

add up to 1.

Really: Looking for the *equilibrium* distribution  p.

Hit this with power iteration.



Singular Value Decomposition

What is the Singular Value Decomposition?

How do I compute it?

orthgonal

diagonal, entries positive

(1) Compute eigenvalues

(for any matrix A)

(2) Make a matrix of the eigenvectors

symmetric positive definite (SPD)

eigenvalues are nonnegative, eigenvectors v_i orthogonal

(3) Make a diagonal matrix      of the square roots of the eigenvalues

(4) 



What's another way of writing the SVD?

Starting from

What do the singular values mean? (in particular the first/largest one)

columns: left singular vectors

singular values

columns of V: right singular vectors

outer product

rank(outer product) = 1

Rank-k best-approximation

minimizes among all rank-2
matrices



So why bother with the SVD if it is so expensive? I.e. what makes the SVD special?

How expensive is it to compute the SVD?



What is the Frobenius norm of a matrix?

How about rank-k best-approximation in the Frobenius norm?



Is there a "reduced" transform for non-square matrices?



Applications of the SVD

(1) Rank-k approximation



So now how about rank-k approximation?

Give an example of where rank-k approximation does something useful.

(2) Computing the 2-norm



(3) Computing the 2-norm condition number


