

columns: left singular vectors

 $A = U \leq V^{\bullet}$ singular values

columns of V: right singular vectors

What's another way of writing the SVD?

x yr =

Starting from
$$A = U \ge V^{\dagger} = \begin{pmatrix} I & I \\ u_1 & \dots & u_m \\ I & I \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 \\ \sigma_2 \\ \sigma_1 & 0 \\ 0 \end{pmatrix} \begin{pmatrix} -v_1 & \cdots & v_m \\ -v_m & -v_m \end{pmatrix}$$

$$A = \begin{pmatrix} -v_{1} \\ -v_{2} \\ -v_{n} \\ -v_{$$

$$1 / x_h y_h = rank(outer product) = 1$$

Rank-k best-approximation
$$(k \in n)$$

 $A_{\mu} = \sigma_{\mu} u_{\nu} v_{\mu}^{\dagger} + \dots + \sigma_{\mu} u_{\mu} v_{\mu}^{\dagger}$ minimizes $\|A - B\|_{2}$ among all rank-2 matrices

What do the singular values mean? (in particular the first/largest one)

$$\begin{array}{rcl} A = U \leq V^{T} & & & \\ \|A\|_{2} = \max & \|A \times \|_{2} = \max & \|V \times \|_{2} = \max & \|\Sigma \vee^{T} \times \|_{2} = \max & \|\Sigma \vee^{T} \times \|_{2} \\ = & \max & \|\Sigma \vee^{T} \times \|_{2} = \max & \|\Sigma \vee \|_{2} = \max & \|\sigma_{1}\| \end{array}$$

 What is the Frobenius norm of a matrix?
How about rank-k best-approximation in the Frobenius norm?

(0) Applications of the SVD
	/ ••
	(1) Rank-k approximation
	Λ
	*
	*
	× *
	×
	*
	>

So now how about rank-k approximation?
 Give an example of where rank-k approximation does something useful.
(2) Computing the 2-norm

(3) Computing the 2-norm condition number