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What was the SVD again? And: is there a reduced form?
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What's another way of writing the SVD?
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What do the singular values mean? (in particular the first/largest one)
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Say | want just a rank-1 approximation of A:
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How expensive is it to compute the SVD?
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So why bother with the SVD if it is so expensive? |l.e. what makes the SVD special?
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Then |[A -@ IL where rank(B)=k is minimized by /4
C
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("Eckart-Young theorem")

AL is called the rank-k best-approximation




What is the Frobenius norm of a matrix?
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\ not really a matrix norm in our sense--

= as in, not produced by any vector norm

How about rank-k best-approximation in the Frobenius norm?
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) Applications of the SVD

(1) Rank-k approximation

Rank-1 approximation
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So now how about rank-k approximation?

Give an example of where rank-k approximation does something useful.
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(2) Computing the 2-norm
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(3) Computing the 2-norm condition humber

A: A N T

Assume A is invertible.
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If A has a nullspace, i.e. if ¢, =0 then the condition

number is infinity.




(4) Principal Component Analysis ("PCA")

measurement 2

Have: a pile of "data" —et

More precisely: m 'measurements' from n 'trials' X

each resulting in a real number

y

X . l:{ m l:"..,h measurement 1

H J

Data matrix:  X= [, i measurements

How do | compute a PCA?




How do | compute a PCA? (cont'd)




(5) Least squares for underdetermined and singular systems







(6) "Total" least squares

For a given matrix A, find the vector x so that

. ”,4,(”2 is minimal
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