If I interpolate a function I already know, will the interpolant be exactly that function?

$$\begin{array}{c|c} & \left| \int (x) - \int (x) \right| \leq C + h^{n+1} & \left(\int or \ all x \right) \\ & n: \ \text{highest polynomial degree we've used} \\ \\ & \text{In the example: (interpolation with linears)} \\ & \left| \int (x) - \int (x) \right| \leq C + h^{n} \\ & \left| \int (x) - \int (x) \right| \leq C + h^{n} \\ & \left| \int (x) - \int (x) \right| \leq C + h^{n} \\ & \left| \int (x) - \int (x) \right| \leq C + h^{n} \\ & \left| \int (x) - \int (x) \right| \leq C + h^{n} \\ & \left| \int (x) - \int (x) \right| \\ & \left| \int (x) - \int (x) - \int (x) \right| \\ & \left| \int (x) - \int$$

So what types of predictions can I make using the interpolation error estimate?
Suppose I have an interpolation error E for some interval length h
for interpolation with a quadratic function.
What would happen if I used h/2 instead of h?
Shorter intervals (smaller h) seem to decrease the error. Why is that?

Interpolation allows several choices. What are good/bad choices?
Have:
- Choice of basis
- Choice of nodes
Let's look at choice of nodes first, then at choice of basis.
What is a "good" set of nodes for polynomial interpolation?
Demo: Choice of interpolation nodes
Observation: Best if nodes cluster towards interval ends
"Best" set of interpolation nodes on [-1,1]: "Chebyshev nodes"

 $X_{k} = \cos\left(\frac{2k+1}{2n}\right) \quad |k| = |\dots|n|$

What are some choices of interpolation basis?

What are some choices of interpolation basis? (cont'd)
(3) Sines and cosines ("Fourier basis")
What's the basis?
What to use as points?

What are some choices of interpolation basis? (cont'd)
 (1) Dadial basis functions
(4) Radial basis functions
\rightarrow

 $\hat{f}(x) = \alpha_1 P_1(x) + \dots + \alpha_n P_n(x)$ $f(x) = \hat{f}(x_i) = \hat{f}(x_i)$ So how would I use calculus on an interpolant? Have: interpolant <u>Want</u>: derivative

 So how would I use calculus on an interpolant? (cont'd)