$\hat{f}(x) = \alpha_1 \rho_1(x) + \dots + \alpha_n \rho_n(x)$ So how would I use calculus on an interpolant? Have: interpolant Want: derivative $\alpha = V^{-1} \vec{l}$ p'(x) = x, l'(x) + ··· + x, l'(x) $V' = \begin{pmatrix} \varphi_{i}'(x_{i}) & \cdots & \varphi_{n}'(x_{i}) \\ (x_{n}) & (x_{n}) \end{pmatrix}$ $= V' \vee^{\top} I$

So how would I use calculus on an interpolant? (cont'd)
Give a matrix that takes two derivatives.
What is the observed behavior of the error when taking a derivative?
What do the entries of the differentiation matrix mean? \rightarrow
$D = V'V'' = \begin{pmatrix} V'V'' \\ V'' \\ \vdots \\$
$f'(x_i) \simeq f(x_0) \cdot (-\frac{1}{2u}) + f(x_i) \cdot (\frac{1}{2u}) = f(\underline{x+u}) - f(\underline{x-u})$
7

What does Simpson's Bule look like on [0, 1/2]?
What does Simpson's Rule look like on [5, 6]?
 How accurate is Simpson's rule?