So how would | use calculus on an interpolant?
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So how would | use calculus on an interpolant? (cont'd)

Give a matrix that takes two derivatives.
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What is the observed behavior of the error when taking a derivative?
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What do the entries of the differentiation matrix mean? 3% —
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"Second-order" centered finite difference
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Can we simplify the proccess for equispaced x-coordinates?
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How would we use translation invariance with centered differences?
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What do we do at the edges?
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How accurate are finite difference formulas?

Can anything else go wrong when we numerically compute derivatives?




Can we use a similar process to compute (approximate) integrals?
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So, once | know my nodes and my weights, what does quadrature look like?

Can you do a full example?
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“Simpson's rule"
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What does Simpson's Rule look like on [0, 1/2]?

What does Simpson's Rule look like on [5, 6]?
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Solving nonlinear equations

Have: &‘);{12—4 IR ngﬁm

Want: w sud thd QM“E\\J

Rewrite the problem so that we only need 3(%J=0. (i.e. no explicit right-hand side)

What if we know that Q is continuous and Q&") : 'ﬂu:) <’O’-(

Can we use this "bracket" to track down the zero?




Convergence Rates of Iterative Procedures

Consider the "error" in the bisection method in the kth step:
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What's the error in the next step, relativeto e, ?

Generally, error behavior like this is called "linear convergence" ("order 1"):
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Generally, error behavior like this is called "quadratic convergence" ("order 2"):

Generally, error behavior like this is called "cubic convergence" ("order 3"):
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(... and so on) Which of these is fastest?

Rewrite this so that the constant stands on its own, for a general order c,; :
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Do not confuse this with "g-th order" convergence for a mesh width h!




Newton's method

Suppose X, is our current guess of the zero.
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Idea: Build a solvable approximate version of f using Q&,Jand Jg ("‘.)

Find the zero of the approximate version.




Name some downsides of Newton's method.

Secant Method

How else could we find a line approximating a function?

Estimate the slope of the approximating line:

Now use this estimate in Newton's method:




Solving systems of nonlinear equations

Want to solve é_g(i)g 5 g:(ll“ —‘*ﬂ@"

Let's try to carry over our 1-dimensional ideas.

Let's first get an idea of what behavior can occur.

Based on the demo: Does bisection stand a chance?

Let's try Newton's method then. What's the linear approximation of -2 ?

OK, now solve that for h.




Let's do an example of that:
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What are the downsides of this method?

So how about (an n-dimensional analog of) the secant method?




So carrying over the secant method to n dimensions is not easy.

It's possible, but beyond the scope of our class.

Here are two starting points to search:

- Broyden's method

- Secant updating methods

Here's one more idea: If we could figure out where the linear approximation

in Newton is 'trustworthy', would that buy us anything?
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