

So how would I use calculus on an interpolant? (cont'd) Give a matrix that takes two derivatives. What is the observed behavior of the error when taking a derivative? $\begin{aligned} \left| \begin{array}{c} f'(x) - f'(x) \right| &\leq C \cdot h^{n} \quad e \quad deriv \\ \left| \begin{array}{c} f(x) - f(x) \right| &\leq C \cdot h^{n} \quad e \quad intp. \\ \left| \begin{array}{c} f(x) - f(x) \right| &\leq C \cdot h^{n+2} \\ \end{array} \end{aligned}$ What do the entries of the differentiation matrix mean? do not care $D = V'V'' = \begin{pmatrix} f(x_0) \\ f(x_1) \\ g(x_2) \\ g(x_1) \\ g(x_1) \\ g(x_2) \\ g(x_1) \\ g(x_1) \\ g(x_2) \\ g(x_1) \\ g(x_1$ 1. fo T $f'(x_i) \approx \frac{f(x_i)}{1}$ "Second-order" centered finite difference

Î	Solving nonlinear equations
O	
	Have: {}: R→ R fmchon
	Want: × sud that f(x)=y
	Rewrite the problem so that we only need $g(x) = 0$ (i.e. no explicit right-hand side)
	What if we know that l is continuous and $l(a) \cdot l(b) < O^{1}$
	Can we use this "bracket" to track down the zero?

Convergence Rates of Iterative Procedures Consider the "error" in the bisection method in the kth step: ehe What's the error in the next step, relative to e_k ? CRT = Generally, error behavior like this is called "linear convergence" ("order 1"): ekt S Generally, error behavior like this is called "quadratic convergence" ("order 2"): entié Generally, error behavior like this is called "cubic convergence" ("order 3"): ektis (... and so on) Which of these is fastest? Rewrite this so that the constant stands on its own, for a general order q: Ca Do not confuse this with "q-th order" convergence for a mesh width h!

Newton's method
Suppose X _k is our current guess of the zero.
▲ (
$ \longrightarrow $
) ×k
F
 Idea: Build a solvable approximate version of fusing $f(x_{a})$
Find the zero of the approximate version.

			/why?
Want to solve	$\vec{f}(\vec{x}) = \vec{0}$	£:R* →	
Let's try to carry	y over our 1-dime	ensional ideas.	
Let's first get ar	n idea of what be	havior can occur.	
Based on the d	emo: Does bisec	tion stand a chan	ce?
Let's try Newton	n's method then.	What's the linea	r approximation of 🧳
OK now solve	that for h		

Let's do an example of that:
$0 \leftarrow 1 \times + 2y - 2$
$y(x,y) = (x^2 + 4y^2 - 4)$
 What are the downsides of this method?
 So how about (an n-dimensional analog of) the secant method?

So carrying over the secant method to n dimensions is not easy.
It's possible, but beyond the scope of our class.
Here are two starting points to search:
- Broyden's method
- Secant updating methods
Here's one more idea: If we could figure out where the linear approximation
in Newton is 'trustworthy', would that buy us anything?
×
Newton step $\vec{x}_{\mu} \sim \vec{p} \vec{k}_{\mu}$