

Solving systems of nonlinear equations $f:\mathbb{R}^{h}\to\mathbb{R}^{h'}$ $\vec{f}(\vec{x}) = \vec{0}$ Want to solve Let's try to carry over our 1-dimensional ideas. Let's first get an idea of what behavior can occur. Based on the demo: Does bisection stand a chance? f ? Let's try Newton's method then. What's the linear approximation of $\tilde{f}(\vec{x}_n,\vec{h}) = f(\vec{x}_n) + \int_{\vec{p}}(\vec{x}_n)$ $\partial f = \begin{pmatrix} \partial p_i & \partial p_i \\ \partial x_i & \partial x_i \\ \partial y_i & \partial p_i \\ \partial y_i & \partial p_i \end{pmatrix}$ $\vec{p}(\vec{x}) = \vec{0} \in$ OK, now solve that for h. $\ddot{O} = f(\vec{x}_{u}) + J_{\vec{p}}(\vec{x}_{u}) \tilde{h} \longrightarrow J_{\vec{p}}(\vec{x}_{u}) \tilde{h} = -f(\vec{x}_{u}) \tilde{h}$ $\ddot{h} = -J_{\vec{p}}(\vec{x}_{u}) f(\vec{x}_{u})$ $\vec{x}_{h+1} = \vec{x}_{h+1}$

Let's do an example of that: $| x + 2y - 2 + f_1$ $| x^2 + 4y^2 - 4 + f_1$ $\vec{p}(\vec{x}) = \vec{\partial}$ f(x,y)= $\begin{pmatrix} \partial P_1 & \partial P_2 \\ \partial X & \partial Y_3 \\ \partial Y_2 & \partial P_2 \\ \partial X & \partial Y_3 \end{pmatrix} =$ Je= = 1 2 2 84 What are the downsides of this method? So how about (an n-dimensional analog of) the secant method?

Optimization Let's try to weaken the requirement $g(\vec{x}) = \vec{O}$. $(g: |\mathcal{R}^{n} \to |\mathcal{R}^{n})$ Instead minimize $\|g(x)\|_{L} = f(\vec{x})$ Create a problem statement for "optimization". $f:\mathbb{N}^{*} \longrightarrow \mathbb{N}^{*} \longrightarrow \text{objective function}$ Find \vec{x} so that $f(\vec{x})$ is minimal. What if I'm interested in the largest possible value of a function g instead?

What could go wrong?
local
global
How can we tell if we've got a (local) minimum in 1D? Remember calculus!
necessary: $\int_{-\infty}^{1} f(x) = \partial$ sufficient: $\int_{-\infty}^{1} f(x) > \partial$
And in n dimensions?
necessary: $\nabla F(x) = 0$ sufficient: $H(x)$ is an def
$\partial \tilde{p} = \partial \tilde{p}$
 $H_0[X] = \begin{bmatrix} \overline{\partial_{X_1}} \partial_{X_1} & \overline{\partial_{X_2}} \end{bmatrix}$
$\partial P = \partial^2 D$
TXADX, DXADX

Let's steal the idea from Newton's method for equation solving. Build a simple version of f and minimize that. Let's try in 1D first. n f (v) f Xkti Does a linear approximation (a line) help at all? $\tilde{f}(x+h) =$ Now minimize that. $f(x) = 23x^{2} - 4x + 3$ $f(x) = f(x_{0}) = f(x_{0})$ $f'(x_{0}) = f'(x_{0})$ $f''(x_{0}) = f''(x_{0})$

Does that look at all familiar?

What's the convergence order of Golden Section Search?

Steenest Descent
 <u>Steepest Descent</u>
What do we do in n dimensions?
 What does that mean mathematically?
 And how far do we go?
Do an example: $\Omega(x) = 1/2 + 25/2$
Do an example. $p(x) = \frac{1}{2}x_0 + \frac{1}{2}x_0$
 What's the convergence order in the example in the demo?
Can we do bottor by using information from the second derivative?
 Can we do beller by using information from the second derivative?

Nowton's mothod in a dimensions
Step 1: Write down a quadratic approximation ${ ilde eta}$ to f at $arksymbol{arksymbol{\kappa}}_{m{m{\kappa}}}$.
Step 2: Find minimum of 🦸 . To do so, take derivative and set to zero.
0

Do an example: $f(x) = \frac{1}{2} x_0^2 + 2.5 x_1^2$

What if we don't even have one derivative, let alone two?!

Constrained Optimization
Modify the problem statement of optimization to accommodate a constraint.
What does a solution/minimum x* of this problem look like?
 Le. what are some necessary conditions on x^* ?

 a = 0
$-\nabla \not = \nabla g \cdot \lambda - \nabla g^{\tau} \lambda$
$= J_{g}^{T} \lambda \text{for som } e \lambda$
Miracle: Reduce constrained to un-constrained optimization.
Define a new function of more unknowned $(A = A = A = 0)$
 Define a new function of more unknowns: x and X, X c IC
$\mathcal{L}(x, \lambda)$:=
 What are the necessary conditions for an un-constrained minimum of $m{\ell}$?
Using Newton's method on $ ot\!$