Newton's method

Suppose X, is our current guess of the zero.
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Find the zero of the approximate version.




Name some downsides of Newton's method.

Does not converge globally (only converges locally, i.e. if

———————startingguess-is-already near the sotution)y —«———

Name an upside:

— Seemstoconverge quickly as soonas we'rectose.

Recap: Rate of convergence--what's that?
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Solving systems of nonlinear equations

Want to solve é%(i)g 5 g:(ll" _,)"@.‘

Let's try to carry over our 1-dimensional ideas.

Let's first get an idea of what behavior can occur.

Based on the demo: Does bisection stand a chance?
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Let's try Newton's method then. What's the linear approximation of ,p ?
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Let's do an example of that:
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What are the downsides of this method?

So how about (an n-dimensional analog of) the secant method?




D Optimization
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Let's try to weaken the requireme(1t a (})e @)
J.
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Create a problem statement for "optimization".
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What if I'm interested in the largest possible value of a function g instead?




What could go wrong?

How can we tell if we've got a (local) minimum in 1D? Remember calculus!
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And in n dimensions?
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Let's steal the idea from Newton's method for equation solving.

Build a simple version of f and minimize that. Let's try in 1D first.
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Does a linear approximation (a line) help at all?

I-Q;(i‘\'h):

Now minimize that.




Does that look at all familiar?




Golden Section Search

Let's try to create an analog to 'bisection’, with a type of bracket.
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Is one middle point in the bracket good enough?

Next: what condition are we going to maintain throughout?

In particular: Is "the minimum is in the bracket" feasible?

What does it mean for f to be 'unimodal'?




Reality check: Do we typically know that a function is unimodal in a bracket?

So how do we maintain unimodality in each bracket?
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Where do we put the midpoints?




What's the convergence order of Golden Section Search?




Steepest Descent

What do we do in n dimensions?

What does that mean mathematically?

And how far do we go?
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Do an example: i0(«) =384 15t

What's the convergence order in the example in the demo?

Can we do better by using information from the second derivative?




Newton's method in n dimensions
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Step 1: Write down a quadratic approximation bﬂ to fat ¥,

-

Step 2: Find minimum of 4’ . To do so, take derivative and set to zero.




Do an example: .Q(x) =334 syt




What if we don't even have one derivative, let alone two?!




Constrained Optimization

Modify the problem statement of optimization to accommodate a constraint.

What does a solution/minimum x*  of this problem look like?

|.e. what are some necessary conditions on x" ?
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Miracle: Reduce constrained to un-constrained optimization

Define a new function of more unknowns
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What are the necessary conditions for an un-constrained minimum of 1

Using Newton's method on 3

gets a new name:




