Let's steal the idea from Newton's method for equation solving.

Build a simple version of f and minimize that. Let's try in 1D first.
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Newton for opt is solving f'(x) = 0



Golden Section Search

Let's try to create an analog to 'bisection’, with a type of bracket.

N

Is one middle point in the bracket good enough?

Next: what condition are we going to maintain throughout?

In particular: Is "the minimum is in the bracket" feasible?

No, so let's promise less and assume more.

What does it mean for f to be 'unimodal'?




Reality check: Do we typically know that a function is unimodal in a bracket?

No, but the method we derive we'll use anyway.

So how do we maintain unimodality in each bracket?
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Where do we put the midpoints?
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What's the convergence order of Golden Section Search?

linear




Steepest Descent

What do we do in n dimensions?

Maybe go in the direction of the steepest descent.

What does that mean mathematically?

d - ~V%(§?) K, K red

*

And how far do we go?

Good question -> Leave that to a one-dimensional opt. method

Do an example: i0(«) = 384 78t
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What's the convergence order in the example in the demo?
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Can we do better by using information from the second derivative?




Newton's method in n dimensions

)
Step 1: Write down a quadratic approximation iﬂ to fat ¥,
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Step 2: Find minimum of a(’ . To do so, take derivative and set to zero.

T h) = ) < Do 40 by ) b /2

{
w

NI ) = Vi) + ) B




Do an example:
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What if we don't even have one derivative, let alone two?!




Constrained Optimization

Modify the problem statement of optimization to accommodate a constraint.

What does a solution/minimum x*  of this problem look like?

|.e. what are some necessary conditions on x" ?
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Miracle: Reduce constrained to un-constrained optimization

Define a new function of more unknowns
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What are the necessary conditions for an un-constrained minimum of 1

Using Newton's method on 3

gets a new name:




Can you do an example?

Minimize (x-v.?‘* +l(\)-\)7~' subject to &N‘y}




