 What if we don't even have one derivative, let alone two?!
$x_{i} = x_{i} - \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
$\frac{1}{1}$
 hxy n
Secant-updating methods: BFGS
 $\left(\begin{array}{c} (\times) \end{array} \right) $

Constrained Optimization Modify the problem statement of optimization to accommodate a constraint. $f: \mathbb{R}^n \to \mathbb{R}$ $\dot{g}(\dot{x}) = 0$ What does a solution/minimum **x*** of this problem look like? I.e. what are some necessary conditions on \times^* ?

Can you do an example?

Minimize
$$(x \cdot 2)^{4} + 2(y - 1)^{2}$$
 subject to $x + 4y = 3$
Macmd7: Min: $x \in 2 + y \in 1$
 $y(x, \lambda) = (x \cdot 2)^{4} + 2(y - 1)^{2} + \lambda (x + 4y - 3)$
 $\nabla \xi = \begin{pmatrix} 4(x - 1)^{3} + \lambda \\ 4(y - 1) + 4\lambda \\ x + 4y - 3 \end{pmatrix}$
 $f(y) = \begin{pmatrix} 12(x - 2)^{2} & 0 & 1 \\ 0 & 4 & 4 \\ 1 & 4 & 0 \end{pmatrix}$

Floating	Point	Arithm	etic

S Floating Point Arithmetic
/
What are the main problems with fixed point arithmetic?
limited range
 super-inaccurate for small numbers

Idea: Set a few bits aside to store the largest exponent. How?

$$2^3 + 2^3 + 2^5 = -(110)_{12}^3 + 2\frac{5}{4}$$

 A significand exponent

 Write these here as a floating point number:

 $12.75 = (\frac{1}{1100}, 01)_{12} = -(1.1000) + 2^3$
 $0.45 = -(0.001)_{12} = -(1.1000) + 2^3$
 $2^{10} = -(1.000)_{12} + 2^{-50}$
 $2^{100} = -(1.000)_{12} + 2^{-50}$
 $2^{100} = -(1.000)_{12} + 2^{-50}$

The first digit of the significand seems to always be a one. Do we need to store it? No what we actually store This is called the "implied one". How is zero represented? Make a new rule: If the exponent has a special value, then turn off the implied one. - 1023 Store d for 0; significand; 000000 exp: -1023

Suppose, for the sake of argument, that we store four bits of the significand. But the true number we would like to represent has seven binary digits.

3141-0

$$(110.01)_{2}^{2} (1.1001)_{2}^{2} (3.142)_{2}^{3}$$

Idea: Round the number.

$$(110.01)_{2} = (1.110011)_{2} \cdot 2^{3} \approx (1.1101)_{2} \cdot 2^{3}$$

What is a denormal number?

Suppose the smallest exponent you can represent is -1022.

$$2^{-1025} = 4$$
. 00 - 2^{-1022} - 1013

Idea: Use the special ("turn off the implied one") exponent (-1023)

and have it *mean* -1022.

Stored values: 00 - 1013

A number that makes use of the special exponent value to turn off the implied one is called *denormal*.

What is the
exponent? significand? value?
20
ل ا
101011
101011
101011
In our 64-bit example:
- 1 hit for sign (+/-)
- 11 bits for largest exponent
- 52 DIts for "DIts"
This is called " <u>double precision"</u> .
What is (very roughly) the smallest number we can represent?
What is (very roughly) the largest number we can represent?
How many accurate decimal digits do we have in the largest
representable number?

×'=9 ×3=lr $f(x) = \alpha \cdot \cos(\theta x) + 5 \cdot \sin(x) + c \cdot \cos(x)$ $f(0) = f(1\pi)$ $f'(x) \simeq f(x+h) - f(x+h) = \left(\frac{1}{2h}\right) \cdot f(x+h) + \left(\frac{1}{2h}\right) f(x+h)$ 1111 +