Constrained Optimization

Modify the problem statement of optimization to accommodate a constraint.

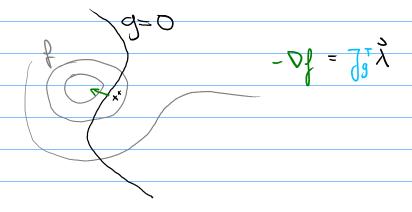
Constraint function $g: \mathbb{R}^n \to \mathbb{R}^n$

What does a solution/minimum x* of this problem look like?

I.e. what are some necessary conditions on x^* ?

All descent directions for f at x* must cause the constraints to be violated.

$$- \nabla f(x) = \int_{g}^{\tau} \vec{\lambda} \qquad \text{for some } \lambda$$



Miracle: Reduce constrained to un-constrained optimization.

Define a new function of more unknowns: \mathbf{x} and λ , $\lambda \in \mathbb{R}^m$

$$\mathcal{L}(x, \lambda) := \int_{0}^{\infty} (x) + g(x)^{T} \lambda$$

What are the necessary conditions for an un-constrained minimum of $oldsymbol{\mathcal{L}}$

$$\nabla \mathcal{L} = 0 = \left(\nabla_{x} \mathcal{L} \right) = \left(\begin{array}{c} 50 \text{ f(x)} + 75 \text{ f(x)} \lambda \\ 9 \text{ f(x)} \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

Using Newton's method on \varkappa gets a new name:

Sequential Quadratic Programming

Can you do an example?

Minimize
$$\frac{\int_{-\infty}^{\infty} |x_{1}y_{2}|^{2}}{\langle x_{1}x_{2}|^{2}} + 2(y_{1}-1)^{2} \quad \text{subject to} \quad x+4y=3$$

$$\int_{-\infty}^{\infty} |y_{1}x_{2}|^{2} = \int_{-\infty}^{\infty} |y_{1}x_{2}|^{2} = \int_{-\infty}^{\infty} |y_{1}x_{2}|^{2} = \int_{-\infty}^{\infty} |y_{1}x_{2}|^{2} + 2(y_{1}-1)^{2} + (x+4y-3) \cdot \lambda$$

$$= (x-2)^{2} + 2(y_{1}-1)^{2} + (x+4y-3) \cdot \lambda$$