’ Floating Point Arithmetic

Have: Integers, made of bits

vl (e ¢ 4

23- 0% | U 0%

Nt ~ N N

[100), = (13)
7 "0

How should we even represent fractions?

Idea: Keep going down past exponent zero
v u

23. 65 S [,]‘{ 0. 1% |]“|1“|(°

P R et T Y

05 % ol1f

So: Could store

- a fixed number of bits with exponents >= zero
- a fixed number of bits with exponents < zero

Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1.

7 (A v
> ') N
Cixed - fb | H
Pa;&‘ 3L S 1 P

What is the smallest number we can represent?

(] "32. PeNY]
A

07"

What is the biggest number we can represent?

/S 3 O S T i(}‘

What's our range then?

-9

[y©
RY,

<D

This is called fixed-point arithmetic, and it's pretty bad.

P el Lt

4
(J 100w 010 . | |_

3L . 3L

g (N AL
Z = i Y
’L"U’ﬂ/ wﬂ,h (J 1 |
\ } 3L) L

Should be able to do better.

Idea: Set a few bits aside to store the largest exponent. How?

ooty o’ L enent
J | significan

