’ Floating Point Arithmetic

Have: Integers, made of bits
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How should we even represent fractions?

Idea: Keep going down past exponent zero
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So: Could store

- a fixed number of bits with exponents >= zero
- a fixed number of bits with exponents < zero

Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1.
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What is the smallest number we can represent?
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What is the biggest number we can represent?

/S 3 O S T i(}‘

What's our range then?
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This is called fixed-point arithmetic, and it's pretty bad.
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Should be able to do better.

Idea: Set a few bits aside to store the largest exponent. How?
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