# coding: utf-8 # # Condition number # In[3]: import numpy as np import numpy.linalg as la import matplotlib.pyplot as pt # Let's grab a $2\times 2$ matrix $A$: # In[5]: if 0: np.random.seed(17) A = np.random.randn(2, 2) else: A = np.array([[3, 0], [0,1]], dtype=np.float64) A # And its inverse: # In[7]: Ainv = la.inv(A) Ainv # Now we would like to figure out where that matrix puts all the vectors with 2-norm 1. # # To do so, let's make an array of vectors with vectors with norm 1: # In[11]: phi = np.linspace(0, 2*np.pi, 30) xs = np.array([ np.cos(phi), np.sin(phi) ]) pt.gca().set_aspect("equal") pt.plot(xs[0], xs[1], "x") pt.grid() # Now apply $A$ to all those vectors...: # In[13]: Axs = A.dot(xs) Axs.shape # ...and plot: # In[15]: pt.figure(figsize=(10, 5)) pt.subplot(121) pt.title("$x$") pt.plot(xs[0], xs[1], "x") pt.gca().set_aspect("equal") pt.subplot(122) pt.title("$Ax$") pt.plot(Axs[0], Axs[1], "v") pt.gca().set_aspect("equal") # ------------- # # Next, let's see what happens to small perturbations at each of the $x$ and $Ax$ points. # # To that end, let's make an array `ys` of shape $2\times N_p\times N_p$, where $N_p$ is the number of points above. # In[18]: # ys has axes: XY x Npoints x Npoints perturbation_size = 0.1 ys = perturbation_size * xs.reshape(2, -1, 1) + xs.reshape(2, 1, -1) Ays = np.tensordot(A, ys, axes=1) Ays.shape # Side note: What does the argument `-1` to reshape do? # ----------------------- # Let's plot what we've just made # In[19]: pt.figure(figsize=(10, 5)) pt.subplot(121) pt.title("$y$") pt.plot(ys[0], ys[1]) pt.gca().set_aspect("equal") pt.subplot(122) pt.title("$Ax$") pt.plot(Ays[0], Ays[1]) pt.gca().set_aspect("equal") # ------------------- # Let's compare this with $\|A\|$: # In[20]: norm = la.norm(A, 2) print(norm) pt.plot(Ays[0], Ays[1]) ax = pt.gca() ax.set_aspect("equal") ax.add_artist(pt.Circle([0, 0], norm, alpha=0.3, lw=0)) # ------------------ # What we want now is a circle around each of the $Ax$ that says, # # "Because of the $\Delta x$ variation, $b$ is at most going to wiggle by this much, # i.e. $\Delta b$ will be at most this big." # ------ # # Now we want a $\kappa$ with $\frac{\|\Delta b\|}{\|b\|}\le \kappa \frac{\|\Delta x\|}{\|x\|}$. # # Assume $\|x\|=1$. Equivalent: $\|\Delta b\|\le \kappa \|\Delta x\|\|b\|$. # # Which $\kappa$ does the job? # In[22]: kappa = la.norm(A, 2)*la.norm(Ainv, 2) # In[23]: pt.plot(Ays[0], Ays[1]) ax = pt.gca() ax.set_aspect("equal") for i in range(Ays.shape[2]): b = Axs[:, i] norm_delta_y = kappa * perturbation_size * la.norm(b) ax.add_artist(pt.Circle(b, norm_delta_y, alpha=0.3, lw=0)) # In[ ]: