# coding: utf-8
# # Computing the Rank
# In[16]:
import numpy as np
# In[17]:
n = 5
A = np.random.randn(n, n)
# Now decrease the rank of `A`:
# In[18]:
A[4] = A[0] + 5 * A[2]
A[1] = 3 * A[0] -2 * A[2]
# What should the rank be now?
# -------------------
# Let's run Gaussian Elimination:
# In[19]:
np.set_printoptions(precision=4)
for i in range(n):
# find biggest entry
j = max(
(j for j in range(i, n)),
key=lambda j: abs(A[j, i]))
# swap rows i and piv_row
row_i = A[i].copy()
row_j = A[j]
A[i] = row_j
A[j] = row_i
# eliminate down
for j in range(i+1, n):
A[j] -= A[i] * A[j,i]/A[i,i]
print(A)
print()
# Now what is the rank of that matrix?