LU factorization

3

Matrices can do neat things:

- Blur an image

- Traverse a graph

- Rotate geometry

Can we come up with a generic "undo" button for these things?

(... that does *not* depend on the application) (!)

To warm up, let's try this for matrices where it is super-easy.

Example: Upper triangular matrices

)
$$a_1 \alpha + a_{12} b + a_{13} C + a_{14} d = X$$
 (4) solve for a
) subshink
 $a_{22} b + a_{23} c + a_{24} d = 4$ (3) solve for b

$$\alpha_{33} \subset t \quad \alpha_{34} d = 2 \quad (2) \text{ solve for } c$$

This is called "back-substitution".

Demo: Coding back-substitution

The analogous process for a lower triangular matrix is called

"forward substitution".

 what do we do about more general matrices?
In principle, same as in linear algebra class:
Gaussian elimination
Demo: Vanilla Gaussian Elimination
Leada ta Daw Fahalan Farma
Leads to Row Echelon Form:
$\left(\begin{array}{c} 2 \\ 3 \\ 3 \\ 7 \end{array}\right)$
3/
Every row in REF is a linear combination of the original rows.
 What's the difference between REF and an upper triangular matrix?
The REF matrix doesn't have to full down to the diagonal.
Le there are zeros allowed on and above the diagonal
What happens if you don't just eliminate downward, but also upward?
What you get is called Gauss-Jordan elimination.
We won't look at it.

Are elimination matrices invertible?

when we multiply (left-column) * (right-column)

but not the other way around.

- Inverse: Flip sign below diagonal

We could rearrange that relationship to get a factorization of A! $A=M_1^{-1}M_2^{-1}\dots M_{L_1}^{-1}M_{L_2}^{-1} U.$ Lower triangular matrix ~> A = LU This is called the LU factorization or LU decomposition. Demo: LU factorization

$M_{2}P_{3}M_{2}P_{2}M,P,A =$	Μ (M ₃ ⁻¹ .
P3M2P2M,PA =	M_3^{-1} (\wedge
A ≈ H 	this still lower triangular?
Domos III with Diveting	
Demo: LO with Proofing	
No, this is actually no lo	onger lower triangular. Oops.
So how do we sort out this mess?	?
Best hope: Try to get to	a factorization of the form $PA=LU$
where P is a product of	permutation matrices.
	tiust move all the Dista the left and
all the M's to the right.	past one another. (They don't "commute."

So... how do we sort out this mess? (cont'd) $M_2 P_3 M_2 P_2 M_1 P_A = M$ Have: Define: $L_3 = M_3$ $L_{7} = P_{3} M_{7} P_{3}^{-1}$ $L_{3} = P_{3}P_{2}M_{1}P_{2}^{-1}P_{2}^{-1}$ L, L, L, P, P, P, Then: $= \left(\mathcal{M}_{3}\right)\left(\mathcal{P}_{3}\mathcal{M}_{2}\mathcal{P}_{3}^{-1}\right)\left(\mathcal{R}_{3}\mathcal{P}_{2}\mathcal{M}_{1}\mathcal{R}_{2}^{-1}\mathcal{P}_{3}^{-1}\right)\mathcal{R}_{3}\mathcal{R}_{1}\mathcal{P}_{1}$ $= M_{2}P_{3}M_{2}P_{2}M_{P}, \quad \blacksquare$ And perhaps the best miracle of them all is that l_{1}, l_{2}, l_{3} are still lower triangular! PA = LU Demo: LU with Partial Pivoting (Part II)

Can LU deal with non-square matrices?

