

Ġ

Is there other notation for least-squares problems?
All these are equivalent:
• Find \dot{x} so that $\ A\vec{x} - \vec{b}\ _2^2$ is as small as possible.
• $\vec{x} = \arg\min_{z} A\vec{x} - \vec{b} _{z}^{2}$
• A×≅b
And how does QR help with least-squares problems?
A=QR
$\ A\ddot{\mathbf{x}} - \mathbf{\vec{b}}\ _{2}^{2} = \ \mathbf{Q}R\dot{\mathbf{x}} - \mathbf{\vec{b}}\ _{2}^{2}$
$\approx \ Q[QRx-b]\ _{2}^{2}$
= ا 🕼 - 🖓 کال 🛌 Since this is *exactly equal* to the
expression we wanted to minimize
 this.
 Is this any easier to minimize?
 upper triangular $\{ X \\ I \}$ can make $R \dot{x} = Q^T \dot{b}$
invertible
 zero
 varying x.
K z Q ^T b

How do we find the parameters then?

 $(t_{1}, m_{1}), (t_{2}, m_{2}), \dots, (t_{200}, m_{300})$ Have: 300 data points Want: 3 unkowns (a, B, X)

Write down equations:

$m_{1} \stackrel{!}{=} \stackrel{\Lambda}{m}(t_{1}) = \alpha t_{1}^{2} + \beta t_{1} + \gamma 1$	/ ξ,	Ł, 1	(m,	
$m_{2} \stackrel{!}{=} \frac{1}{m} (t_{2}) = \alpha t_{2}^{2} + \beta t_{2} + \beta 1$	y t [*] ₂	t ₁ 1	m _ź	
م ۲ ۲ ۱	1	, ,	- -	
$m_{300} \stackrel{!}{=} \stackrel{1}{M} \left(\frac{1}{7} \right) = olt_{300}^{2} + \beta \frac{1}{7} + \gamma 1$	t 2 300	t. 1) m ₃₀₁ /	

Go to matrix form Write as least squares problem

Now solvable using QR.

Demo: Data Fitting