
Singular Value Decomposition

What is the Singular Value Decomposition?

How do I compute it?

The SVD is a factorization of an m⨉n matrix into:

- An  m⨉m orthogonal matrix U (columns: "left singular vectors")

- An  m⨉n diagonal matrix Σ ("Sigma")

- An  n⨉n orthogonal matrix Vᵀ (columns: "right singular vectors")

(1) Compute the eigenvalues and eigenvectors of AᵀA.

(for example using orthogonal iteration)

(2) Make a matrix V from the vectors vᵢ

(3) Make a diagonal matrix Σ from the square roots of the eigenvalues:

(4) Find U from

(While being careful about non-squareness and zero sing.values)

with the singular values on the diagonal

Observe U is orthogonal.

Demo: Computing the SVD

Convention:



What's another way of writing the SVD?

Starting from

What do the singular values mean? (in particular the first/largest one)

we find that: (assuming m>n for simplicity)

That means:

The SVD writes the matrix A as a sum of outer products

(of left/right singular vectors).

U orth.

V orthogonal, so Let diag.

So the SVD (finally) provides a way to find the 2-norm.

Entertainingly, it does so by reducing the problem to finding the 2-norm

of a diagonal matrix.



So why bother with the SVD if it is so expensive? I.e. what makes the SVD special?

How expensive is it to compute the SVD?

Next, define

Observe that        has rank k. (And A has rank n.)

Assume

Then among all rank-k (or lower) matrices B is minimized by       

("Eckart-Young theorem")

Demo: Relative cost of matrix factorizations

Even better:

is called the best rank-k approximation to A.

(where k can be any number)

This best-approximation property is what makes the SVD extremely

useful in applications and ultimately justifies its high cost.



What is the Frobenius norm of a matrix?

How about rank-k best-approximation in the Frobenius norm?

It's the same as gluing all the rows (or columns)

together into one gigantic vector and then taking the

2-(vector-)norm of that.

Although this is called a "norm" and works on

matrices, it's not really a "matrix norm" in our

definition. There is no vector norm whose

associated matrix norm is the Frobenius norm.

(Let A and       be defined as before.)

I.e.       also minimizes the Frobenius norm among all rank-k (or lower)

matrices.



Is there a "reduced" transform for non-square matrices?

Yes:

"Full" version shown in black

"Reduced" version shown in red


