D Singular Value Decomposition

What is the Singular Value Decomposition?

The SVD is a factorization of an mxn matrix into: A= (AZ Vs

- An. mxm orthogonal matrix U (columns: "left singular vectors")

- An mxn diagonal matrix z ("Sigma")

with the singular values on the diagonal
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- An nxn orthogonal matrix V' (columns: "right singular vectors")

How do | compute it?

(1) Compute the eigenvalues and eigenvectors of ATA.

(for example using orthogonal iteration)
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(2) Make a matrix V from the vectors vi
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(3) Make a diagonal matrix Z from the square roots of the eigenvalues:
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4) FindUfrom A= WZVS &  UL=~AV

(While being careful about non-squareness and zero sing.values)

Observe U is orthogonal.

Demo: Computing the SVD




What's another way of writing the SVD?

Starting from  A- (L Z VU~ G%w\) (’;% (—:,Vl::

we find that: (assuming m>n for simplicity)
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That means:

The SVD writes the matrix A as a sum of outer products

(of left/right singular vectors).

What do the singular values mean? (in particular the first/largest one)
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So the SVD (finally) provides a way to find the 2-norm.

Entertainingly, it does so by reducing the problem to finding the 2-norm

of a diagonal matrix.




How expensive is it to compute the SVD?

Demo: Relative cost of matrix factorizations

So why bother with the SVD if it is so expensive? |l.e. what makes the SVD special?
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Assume g, 24,2 - 20,>0.

Next, define /4.," CuV + oV + -+ O U U ([(ch)
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Observe that A, has rank k. (And A has rank n.)

Then [] A -B/[7 among all rank-k (or lower) matrices B is minimized by Au,
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("Eckart-Young theorem")

Even better:
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/]k is called the best rank-k approximation to A.

(where k can be any number)

This best-approximation property is what makes the SVD extremely

useful in applications and ultimately justifies its high cost.




What is the Frobenius norm of a matrix?

It's the same as gluing all the rows (or columns)

together into one gigantic vector and then taking the

2-(vector-)norm of that.
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Although this is called a "norm" and works on

matrices, it's not really a "matrix norm" in our

definition. There is no vector norm whose

associated matrix norm is the Frobenius norm.

How about rank-k best-approximation in the Frobenius norm?

(Let A and /1,",~ be defined as before.)
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l.e. Ak also minimizes the Frobenius norm among all rank-k (or lower)

matrices.




Is there a "reduced" transform for non-square matrices?

Yes:
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"Full" version shown in black

"Reduced" version shown in red




