Œ	7) Optimization
	Let's try to weaken the requirement $f(x) \circ \vec{O}$. $(f: \mathbb{R}^n \to \mathbb{R}^n)$
	Ideo: minimize IIQ[x)II2
	But: Is the norm really necessary?
	Create a problem statement for "optimization".
	f: IR"> (R) Not R"
	called the " <u>objective function</u> "
	Find \vec{x} so that \vec{x} assumes the smallest possible value.
	What if I'm interested in the largest possible value of a function g instead?
	Consider -g(x) = f(x)
	$\max \text{ or } g = \min \text{ or } r$

Does that look at all familiar? Yes, that's just like doing solving f'(x)=0 with Newton's method. So this gets to be called Newton's method, too. To be precise: Newton's method for optimization. Demo: Newton's method in 1D

What's the convergence order of Golden Section Search?
What's the convergence order of conden section section.
Linear

Steepest Descent

 What do we do in n dimensions?

 Idea: Go in direction of steepest descent.

 What does that mean mathematically?

$$d_{--} \nabla g(x_u)$$
 $d_{--} \nabla g(x_u)$
 $d_{--} \nabla g(x_u)$

Newton's method in n dimensions

 Step 1: Write down a quadratic approximation
$$\hat{f}$$
 to f at x_{k-1} .

 $(0): \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $v 0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $v 0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $v 0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $v 0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $v 0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}'(x) h + \hat{f}'(x) \frac{h^2}{2}$
 $0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}(x) + \hat{f}(x) \frac{h^2}{2}$
 $0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}(x) + \hat{f}(x) \frac{h^2}{2}$
 $0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}(x) \hat{f}(x)$
 $0: \tilde{f}(x, th) = \hat{f}(x) + \hat{f}(x) \hat{f}(x)$
 $0: \tilde{f}(x, th) = -\hat{f}(x)$
 $0: \tilde{f}(x, th) = -\hat{f}(x)$
 $f(x) = -\hat{f}(x)$
 $0: \tilde{f}(x) + \hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $0: \tilde{f}(x) + \hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x)$
 $f(x) = -\hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x) \hat{f}(x)$
 $f(x) = -\hat{f}(x) \hat{f}(x) \hat{f}(x) \hat{f}(x)$

Do an example:
$$\int_{0}^{L} (h) = \frac{1}{2} x_{a}^{a} + 25 x_{a}^{a}$$

 $\Im_{0}^{a} (h) = \left(\frac{x_{a}}{5x_{a}} \right)$
 $H_{1}(h) = \left(\frac{1-\sigma}{5} \right)$
Demo: Newton's method in n dimensions

What if we don't even have one derivative, let alone two?!
Options:
- Nelder-Mead Method ("Amoeba method")
$\lambda_{\mathcal{J}^{(k_{2})}}$
χ_{μ} How many points in n dim?
$f(x_1) = f(x_1) \leq f(x_2) \leq f(x_3)$
Demo: Nelder-Mead
- Secant updating methods (for example "BFGS")
 Broyden Fletcher
 Goldfarb Shanno
 The "trust region" idea applies in optimization, too!
(see end of Nonlinear Equations chapter)

Can you do an example?

 $(x-2)^{4} + 2(y-1)^{2}$ subject to x+4y=3Minimize Minimizing $(x-2)^{4} + 2(y-1)^{1}$ while ignoring the constraint. yields $x \ge 1$, $x \ge 1$. As expected, that minimum violates the constraint. So, find Lagrangian: $\mathcal{L}(x,y,\lambda) = (x-2)^{4} + \mathcal{I}(y-1)^{7} + \lambda \left((x+4y) - 3 \right)$ added another
rewritten to g(x rewritten to q(x)=0dimension, the Lagrange multiplier λ Then use an unconstrained optimization method on this, and the minimum (in x,y) should satisfy the constraint. $\overline{\nabla \mathcal{L}\left(\times_{i} y_{i} \lambda\right)} = \begin{pmatrix} 4 & (x-2)^{3} & \pm \lambda \\ 4 & (y-1) & \pm 4 \\ x + 4 & y-7 \end{pmatrix}$ $H_{x_{1}y_{1}\lambda}(x_{1}y_{1}\lambda) = \begin{pmatrix} 12(x-2)^{2} & 0 \\ 0 & \psi & \psi \end{pmatrix}$ Demo: Sequential Quadratic Programming