
Floating Point Arithmetic

Want: Something like the real numbers... in a computer

Have: Integers, made of bits

Idea: Keep going down past exponent zero

So:

How should we even represent fractions?

Could store
- a fixed number of bits with exponents >= zero
- a fixed number of bits with exponents < zero

Suppose we use a 64-bit integer, with 32 bits >= 1 and 32 bits < 1.

What is the smallest number we can represent?

What is the biggest number we can represent?

What's our range then?

not a lot

This is called fixed-point arithmetic.

How many accurate decimal digits do we have in a number near ?

How many accurate digits do we have in a number near ?

What is the problem here?

Rounding starts at

about one digit (!)

about 19

Fixed point offers much more relative accuracy for

large numbers than small numbers.

Also, the overall magnitude of the representable

numbers is limited.

Idea: Set a few bits aside to store the largest exponent. How?

Write these here as a floating point number:

Instead of "fixing" where the 'decimal' point
goes, we make its location "floating".

This is called a "floating point" number.

It has two distinct parts that need to be stored:

"significand" "exponent"

The first digit of the significand seems to always be a one. Do we need to store it?

How is zero represented?

No, we can just leave it out.

The "implied one" means our FP number is ≠0.

just store
this (not the
leading 1)

and this

This is called the "implied one" in floating point representation.

To fix this, we designate a "special" value of the exponent

(one of the extreme values, probably) to mean "turn off the implied one."

Suppose this special exponent value is -1023.

Then 0 is stored as:

significand exponent

And because the (entire) significand (with the "implied one" turned off)

is now legitimately zero, we've found a way to represent zero.

(regardless of the exponent)

What is a denormal number?

Suppose the smallest exponent you can represent is -1022.

What happens if you run out of digits to store in your significand?

Suppose, for the sake of argument, that we store four bits of the

significand. But the true number we would like to represent has

seven binary digits.

How would you represent

Stored values:

Intended meaning:

ExponentSignificand

This is how much
we can store.

Revolutionary idea (not really): Round the result.

already as small
as they get

Idea: Use our "special" exponent value of -1023 to turn off the "implied one."

means: use exponent
-1022, but also turn off
the "implied one."

Numbers that have the leading zero turned off are called "denormal".

Zero was our first example of a denormal number.

In our 64-bit example:

- 1 bit for sign (+/-)
- 11 bits for largest exponent
- 52 bits for "bits"

This is called "double precision".

What is (very roughly) the smallest number we can represent?

What is (very roughly) the largest number we can represent?

Exponent ranges from
-1023 to 1024

How many accurate decimal digits do we have in the largest
representable number?

What is the...

exponent? significand? value?

Rounding starts at

digits

but: extreme values
are special So really:

-1022 to 1023

How many accurate decimal digits do we have in the smallest
representable number?

So what could possibly go wrong?

How many accurate (binary) digits are there in the above result?

Called "catastrophic cancellation"

Demo: Floating point vs. program logic

Demo: Catastrophic Cancellation

Demo: Picking apart a floating point number

Same relative accuracy for numbers of every magnitude: Yay!

Rounding starts at

digits

