CS 357: Numerical Methods

Lecture 11: QR Decomposition

Eric Shaffer



Why is orthogonality usefule

O Matrices with orthonormal columns can do special things
O Qv preserves the 2-norm of v

O Important in Least Squares problems



Orthogonal Transformations Preserve

the 2-Norm

O What is frue about the columns of an orthonormal matrix Q¢
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Orthogonal Transformations Preserve
the 2-Norm
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Orthogonal Transformations Preserve

the 2-Norm



Orthogonal Transformations Preserve

the 2-Norm



Orthogonal Transformations Preserve

the 2-Norm

O What does this mean in terms of amplifying errore





























Least Squares Problems

O Lots of interesting problems lack an exact solution....
O Fit aline to a set of poinfts....














Least Squares Applications

Tornadoes by Year (U.S.)
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Least Squares Applications

wOBA and Runs Scored per Game
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Least Squares Applications
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IPCC SRES A1FlI
very likely to exceed 4°C
Reference (close to SRES A1B\
likely to exceed 3°C
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virtually certain to exceed 2°C; 50% chance above 3°C pledges
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Beware: correlation and causation

T USED T© THINK THEN T TOOK A | | SOUNDS LIKE THE
CORRELATION MPUED STATISIICS CLASS. CLASS HELPED.
CAUSATION. NOwW I DON'T, WELL, MAYBE
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Preview: Least Squares as Linear

Algebra

Let’s fit a line fo series of data sampled over times 1, t;, TQ

The line is given by f(t) =x,f + %, b. L o
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So...nhow does orthogonality relate to

least squares?e

O The closest fit to the observed data is an orthognonal
projection into the column space of a matrix....

You'll understand later....

column-space of A

Figure J.1: Geometrical interpretation of orthogonal projection.











Recap: Orthonormal Basis

O A basis is orthonormal if each basis vector: Lﬁ
Has unit length ~
Is orthogonal to all other basis vectors. .
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O Example: (1,0) and (0,1) for 2D Euclidean space
O Can you give another 2D orthonormal basis?
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Recap: Orthonormal Basis

For some given vector )? how do | find coefficients with respect to an ONB?

2. (kb) B+ (xb) by (xb) b+ - +  (cbo) b,

—_ —_— | —

Much easier than finding coefficients by solving a linear system!

Also much cheaper: )




Recap: Orthonormal Basis

—an we build a matrix that computes those coefficients for us?

A square matrix whose columns are orthonormal is called orthogonal.
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Orthogonal Projection

What if Q contains a few zero columns instead of orthonormal vectors?

orthonormal columns

Define P - QQ"

Compute P for %= w0, + - ftu,b,:
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Orthogonal Projection

Define P= QT

Compute PX for R=xb, + - tu,b,:
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Gram-Schmidt Orthogonalization

O Given linearly independent al and a2
O Find g1 and g2 that are orthonormal and span same space



Classical Gram-Schmidt

O We can orthogonalize any number of vectors,..
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for k in range(A.shape[l]): K = cotam®
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for j in range(k)*%
q = g - np.dot(avec, Q[:,]]1)*Q[:,]]
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O Rounding error can destroy orthogonality in the g, vectors

O Also we need to store A, Q and R separately
problematic for large systems



Modified Gram-Schmidt

for k in range(A.shape[l]):
q = A[:, K]
for j in range(k):

d = q - np.dot(qg, Q[:,J])*Q[:,]]

Q[:, k] = g/la.norm(q)



