CS 357: Numerical Methods

Lecture 11: QR Decomposition

Eric Shaffer

Why is orthogonality useful?

- Matrices with orthonormal columns can do special things
- Qv preserves the 2-norm of \mathbf{v}
- Important in Least Squares problems

Orthogonal Transformations Preserve the 2-Norm

- What is true about the columns of an orthonormal matrix Q ?
- What is QQ^{\top} ?

$$
\begin{aligned}
& c_{i} \cdot c_{i}=0 \quad i \neq j \\
& c_{i} C_{i}=1=\left\|c_{i}\right\|_{2}^{2}
\end{aligned}
$$

$$
Q^{\top} Q=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
0 & & \ddots & \vdots \\
0 & \cdots & \cdots & -1
\end{array}\right]=I
$$

Orthogonal Transformations Preserve the 2-Norm

$$
\begin{aligned}
& =v^{\top} Q^{\top} Q v=v^{\top} v=\|v\|_{2}^{2}
\end{aligned}
$$

Orthogonal Transformations Preserve the 2-Norm

Orthogonal Transformations Preserve the 2-Norm

Orthogonal Transformations Preserve the 2-Norm

- What does this mean in terms of amplifying error?

$$
V=V_{\text {True }}+V_{e}
$$

Least Squares Problems

- Lots of interesting problems lack an exact solution....
- Fit a line to a set of points....

Least Squares Applications

Tornadoes by Year (U.S.)

Least Squares Applications

Least Squares Applications

Beware: correlation and causation

Preview: Least Squares as Linear Algebra

Let's fit a line to series of data sampled over times $t_{0}, t_{1}, t_{2} \ldots, t_{m-1}$
The line is given by $f(t)=\underbrace{x_{1}+x_{0}}_{1}$

$$
\left[\begin{array}{cc}
1 & t_{0} \\
1 & t_{1} \\
\vdots \\
1 & t_{m-1}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{c}
b_{0} \\
\\
b_{m-1}
\end{array}\right] \quad f\left(t_{0}\right)=b_{0}
$$

So...how does orthogonality relate to least squares?

- The closest fit to the observed data is an orthognonal projection into the column space of a matrix....
- You'll understand later....

Figure J.1: Geometrical interpretation of orthogonal projection.

Recap: Orthonormal Basis

- A basis is orthonormal if each basis vector:

- Has unit length
- Is orthogonal to all other basis vectors.

- Example: $(1,0)$ and $(0,1)$ for 2D Euclidean space
- Can you give another 2D orthonormal basis?

$$
\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \quad\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)
$$

Recap: Orthonormal Basis

For some given vector $\overrightarrow{\mathrm{x}}$, how do I find coefficients with respect to an ONB?

$$
\vec{x}=\left(x \cdot b_{1}\right) \vec{b}_{1}+\left(x \cdot b_{2}\right) \vec{b}_{2}+\left(x \cdot b_{3}\right) \vec{b}_{2}+\cdots+\left(x \cdot b_{n}\right) \vec{b}_{n}
$$

Much easier than finding coefficients by solving a linear system! Also much cheaper: $O\left(n^{2}\right)$

Recap: Orthonormal Basis

こan we build a matrix that computes those coefficients for us?

A square matrix whose columns are orthonormal is called orthogonal.

Example

$$
\begin{aligned}
& b_{1}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \\
& b_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{7}}{2}\right) \\
& Q=\left[\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right] \\
& Q^{T}\left[\begin{array}{l}
\sqrt{2} \\
\sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{aligned}
$$

Orthogonal Projection

What if Q contains a few zero columns instead of orthonormal vectors?

\square

$$
\text { Define } P:=Q Q^{\top}
$$

Compute $P \vec{x}$ for $\vec{x}=\alpha_{1} \vec{b}_{1}+\cdots+\alpha_{n} \vec{b}_{n}$:
$Q^{r} \vec{x}=\left(\begin{array}{c}\vec{x} \cdot \vec{b}_{1} \\ \vdots \\ \vec{x} \cdot \vec{b}_{k} \\ 0 \\ \vdots \\ \dot{0}\end{array}\right)$

Orthogonal Projection
Define $P:=Q Q^{T}$

Compute $P \vec{x}$ for $\vec{x}=\alpha_{1} \vec{b}_{1}+\cdots+\alpha_{n} \vec{b}_{n}$:

$$
\begin{array}{l}
Q^{r} \vec{x}=\left(\begin{array}{c}
\vec{x} \cdot \vec{b}_{1} \\
\vdots \\
\vec{x} \cdot \vec{b}_{k} \\
\vdots \\
\vdots \\
0
\end{array}\right) \\
Q\left(Q Q^{r} \vec{x}\right)=\underbrace{\left(x \cdot \vec{b}_{1}\right) \vec{b}_{1}+\cdots+\left(\vec{x} \cdot \vec{b}_{k}\right)}_{\text {x projected onto }} \vec{b}_{k}
\end{array} \underbrace{0 \cdot \vec{b}_{k+1}}_{\overrightarrow{0}}+\cdots+0 \cdot \vec{b}_{n g})
$$

$\stackrel{\rightharpoonup}{b_{1}} \ldots \vec{b}_{k}$

Example

$$
\left\{\begin{aligned}
q_{1} & =a_{1} / 11 a_{1} \| \\
r & =a_{2}-\left(q_{1} \cdot a_{2}\right) q_{1} \\
q_{2} & =r / r_{11}
\end{aligned}\right.
$$

Gram-Schmidt Orthogonalization

- Given linearly independent a1 and a2
- Find q1 and q2 that are orthonormal and span same space

Classical Gram-Schmidt

- We can orthogonalize any number of vectors
\qquad

$$
K=\operatorname{colum} n
$$

avec $=A[:, k]$
q = avec
for j in range(k):

Q $:$: k] = q/la.norm(q)
orthogonaliz.in agairst. columnj

Problems

- Rounding error can destroy orthogonality in the q_{k} vectors
- Also we need to store A, Q and R separately
- problematic for large systems

Modified Gram-Schmidt

for k in range(A.shape[1]):

$$
q=A[:, k]
$$

$$
\text { for } j \text { in range(k): }
$$

$$
q=q-n p \cdot \operatorname{dot}(q, Q[:, j]) * Q[:, j]
$$

$$
\mathrm{Q}[:, \mathrm{k}]=\mathrm{q} / \mathrm{la} \cdot \operatorname{norm}(\mathrm{q})
$$

