CS 357: Numerical Methods

Lecture 12: QR Decomposition Least Squares

Eric Shaffer

QR review

- Reduced QR
- Let A by m by n and A=QR
 - \square What is the shape of Q? $\land \checkmark \land$

 $\Box \text{ What is the shape of R?} \qquad \mathbf{\eta} \times \mathbf{n}$

What are they for Full QR?

$$A = O (0)$$

mxn mxm mxn

~ R /

QR review

Solving Linear Systems with QR

Ax=b for A and n by n matrix

Least Squares with QR

Tall and skinny systems

No exact solution....

"Best" solution

- Find some x so that Ax is as close to b as we can get
- Take the difference...and measure the magnitude using a norm
- We want to minimize $||Ax b||_2^2$
- **The** residual is r = Ax b
- We are minimizing the sum of squares of the residual
- This process is called a least squares problem

Notation

Lots of different notation that means the same thing

Find x so that
$$||Ax - b||_2^2$$
 is minimized

$$x = argmin_x ||Ax - b||_2^2$$

 $\Box Ax \cong b$

QR and Least Squares

QR and Least Squares

The Normal Equations

Another way of solving Least Squares

$$A^{T}A \times = A^{T}b$$

condition # $(A^{T}A) = (condition # (A))^{2}$

Question....

Why is it called "linear least squares"

Data Fitting

Lots of interesting problems lack an exact solution....
Fit a function to a set of points....

Data Fitting

Lots of interesting problems lack an exact solution....
Fit a function to a set of points....

Fitting a line

m sample points
$$p_i = (t_i, y_i)$$

 $y_i = x_i t_i + x_0$
A
 $\begin{bmatrix} 1 & t_i \\ 1 & t_2 \\ \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$
 2

Fitting a curve

"Zinean least squares Yi are linear

Fitting a curve