CS 357: Numerical Methods

Lecture 12:
 QR Decomposition
 Least Squares

Eric Shaffer

QR review

$$
A=Q R
$$

R Reduced $Q R$ Let A by m by n and $A=Q R$
\square What is the shape of Q ? $m \times n$
What is the shape of R ? $n \times n$

- What are they for Full QR?

$$
\left.\begin{array}{ll}
\underset{m \times n}{ }= & Q_{m \times m}
\end{array} \begin{array}{l}
\text { they for Full QR? } \\
0
\end{array}\right)
$$

QR review

- What is special about Q? orth normal
colum bs unitized orthogond eachother
What space do the al, \ldots. , an columns span?
basis for range (A)

$$
\begin{aligned}
& =\operatorname{span~of~}_{\text {colum of }} \\
& \text { col }
\end{aligned}
$$

Solving Linear Systems with QR

- $A x=b$ for A an n by n matrix
- If $A=Q R$, how can we solve for x ?

$$
\begin{aligned}
& Q R x=b \\
& Q y=b
\end{aligned}
$$

$$
Q^{\top} Q^{y} \frac{Q^{\top} b}{-0^{\top} b}
$$

$$
y=Q^{\top} b
$$

$$
R x=y=Q^{\top} b
$$

- What is the computational cost? $Q R \rightarrow O\left(n^{3}\right)$

$$
\begin{gathered}
a=Q^{+} b \rightarrow O\left(n^{2}\right) \\
\text { solve } \rightarrow 0
\end{gathered}
$$

solve w/

Solve $\rightarrow O\left(n^{2}\right)$ back substitution

Least Squares with QR

- Tall and skinny systems

- No exact solution....

"Best" solution

- Find some \mathbf{x} so that $\mathbf{A x}$ is as close to \mathbf{b} as we can get
- Take the difference...and measure the magnitude using a norm
- We want to minimize $\widehat{A x-b \|_{2}^{2}}$
\square The residual is $r=A x-b$
- We are minimizing the sum of squares of the residual
\square This process is called a least squares problem

Notation

ㅁ Lots of different notation that means the same thing
\square Find \times so that $\|A x-b\|_{2}^{2}$ is minimized

- $x=\operatorname{argmin}_{x}\|A x-b\|_{2}^{2}$
- $A x \cong b$

QR and Least Squares

$$
\begin{aligned}
\begin{array}{l}
A=Q R \\
\|A x-b\|
\end{array} & =\|Q R x-b\| \\
& =\left\|Q^{\top}\left(Q R_{x}-b\right)\right\| \\
& =\left\|R x-Q^{\top} b\right\|
\end{aligned}
$$

QR and Least Squares

$$
R_{\text {top }} x=\vec{Q} b \text { solve }
$$

That minimizes $R_{x}-Q^{+} b$
norm of residual $\|A x-b\|=\left\|\left(a^{\top} b\right)_{\text {bolton }}\right\|$

The Normal Equations

$$
A x \cong b
$$

Another way of solving Least Squares

$$
\begin{aligned}
& A^{\top} A x=A^{\top} b \\
& \text { condition } \#\left(\vec{A}^{\top} A\right)=(\text { condition\# } A)^{2}
\end{aligned}
$$

Question....

- Why is it called "linear least squares"

Data Fitting

- Lots of interesting problems lack an exact solution....
- Fit a function to a set of points....

X

Data Fitting

- Lots of interesting problems lack an exact solution....
- Fit a function to a set of points....

Fitting a line

$$
\begin{gathered}
m \text { sample } \begin{array}{c}
\text { points } p_{i}=\left(t_{i}, y_{i}\right) \\
A \\
m y_{i}=x_{1} t_{i}+x_{0} \\
\left.\left[\begin{array}{cc}
1 & t_{1} \\
1 & t_{2} \\
\vdots \\
1 & t_{m}
\end{array}\right] \begin{array}{c}
x \\
2
\end{array} \begin{array}{c}
x_{0} \\
x_{1} \\
2
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
\end{array},
\end{gathered}
$$

Fitting a curve
\qquad

$$
f(t)=x_{2} t^{2}+x_{1} t+x_{0}
$$

$$
\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
& \vdots & t_{m}^{2} \\
1 & t_{m} & t_{m}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

"linear" Least squares $\rightarrow \quad x_{i}$ are 2 near $^{\prime}$

Fitting a curve

