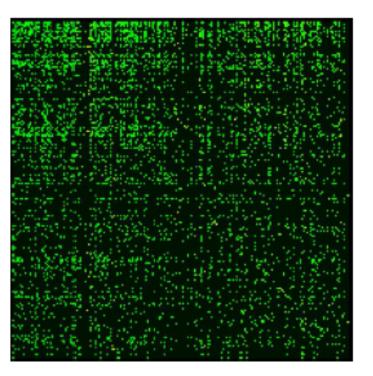
CS 357: Numerical Methods

Lecture 13: Eigenvalues and Eigenvectors

Eric Shaffer

Eigenthings



Eigenvectors and eigenvalues

Reveal action and geometry

Lots of applications

Engineering design make sure your bridge won't spontaneously fall down

Data analysis Google and PageRank

Eigenvectors

Given matrix A: which vectors r mapped to a multiple of itself?

$$A\mathbf{r} = \lambda \mathbf{r} \qquad \lambda \in \mathbb{R}$$

Disregard the "trivial solution" $\mathbf{r} = \mathbf{0}$

In 2D: at most two directions Symmetric matrices: directions orthogonal (more on that later)

Fixed directions called the eigenvectors — from the German word "eigen" meaning special or proper Factor λ called its eigenvalue Key to understanding geometry of a matrix

How to find the eigenvalues of a 2×2 matrix A

$$A\mathbf{r} = \lambda \mathbf{r} = \lambda / \mathbf{r}$$
$$[A - \lambda I]\mathbf{r} = \mathbf{0}$$

Matrix $[A - \lambda I]$ maps a nonzero vector **r** to the zero vector $\Rightarrow [A - \lambda I]$ rank deficient matrix \Rightarrow

$$p(\lambda) = \det[A - \lambda I] = 0$$

Characteristic equation: polynomial equation in λ — 2D: characteristic equation is quadratic $p(\lambda)$ called the characteristic polynomial

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
$$p(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$
$$p(\lambda) = \lambda^2 - 4\lambda + 3 = 0$$
$$\lambda_1 = 3 \qquad \lambda_2 = 1$$

Recall quadratic equation: $a\lambda^2 + b\lambda + c = 0$ has the solutions

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example continued

Find \mathbf{r}_1 and \mathbf{r}_2 corresponding to $\lambda_1 = 3$ and $\lambda_2 = 1$

$$\begin{bmatrix} 2-3 & 1\\ 1 & 2-3 \end{bmatrix} \mathbf{r}_1 = \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \mathbf{r}_1 = \mathbf{0}$$

Homogeneous system and rank 1 matrix

 \Rightarrow infinitely many solutions Forward elimination results in

 $\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{r}_1 = \mathbf{0}$

<ロト (日) (日) (日) (日)

DQC

Assign
$$r_{2,1} = 1$$
, then $\mathbf{r}_1 = c \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Next: $\lambda_2 = 1$, find \mathbf{r}_2

$$\begin{bmatrix} 2-1 & 1\\ 1 & 2-1 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix} \mathbf{r}_2 = \mathbf{0}$$
$$\mathbf{r}_2 = c \begin{bmatrix} -1\\ 1 \end{bmatrix}$$

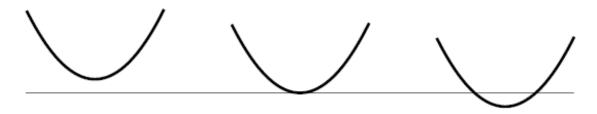
Recheck Figure: $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is not stretched – it is mapped to itself Often eigenvectors normalized for degree of uniqueness

$$\mathbf{r}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \qquad \mathbf{r}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$$

Dominant eigenvector: eigenvector corresponding to dominant eigenvalue

The Geometry of Eigenvectors

Quadratic polynomials have either no, one, or two *real* zeroes



If there are no zeroes: then A has no fixed directions Example: rotations — rotate every vector; no direction unchanged Rotation by -90°

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Characteristic equation

$$\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda^2 + 1 = 0$$

•• • • •

Three Ways to Say the Same Thing

$$Ax = \lambda x$$

(A-\lambda I)x=0
x \epsilon N(A-\lambda I)

Matrices with Easily Found Eigenthings

Triangular Matrices

Eigenvalues are the diagonal entries

□ To find eigenvectors, find $N(A - \lambda I)$

Example

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \lambda_i = 4, \ 3, \ 2, \ 1$$

Starting with $\lambda_1 = 4$:

$$\begin{bmatrix} -3 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \mathbf{r}_1 = \mathbf{0} \quad \Rightarrow \quad \mathbf{r}_1 = \begin{bmatrix} 1/3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Repeating for all eigenvalues

$$\mathbf{r}_{2} = \begin{bmatrix} 1/2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{r}_{3} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 1 \end{bmatrix} \quad \mathbf{r}_{4} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and check: } A\mathbf{r}_{i} = \lambda_{i}\mathbf{r}_{i}$$

Finding Eigenvalues for Larger n

General $n \times n$ matrix has a degree n characteristic polynomial

$$p(\lambda) = \det[A - \lambda I] = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda)$$

Let
$$\lambda = 0$$
 then $p(0) = \det A = \lambda_1 \lambda_2 \cdot \ldots \cdot \lambda_n$

Finding zeroes of n^{th} degree polynomial nontrivial

- Use iterative method to find dominant eigenvalue (see next Section)
- Symmetric matrices always have real eigenvalues
- A and A^{T} have the same eigenvalues
- A is invertible and has eigenvalues λ_i , then A^{-1} has eigenvalues $1/\lambda_i$

Eigenvalues and Changes to A

• Scaling $\beta A x = \beta \lambda x$

• Shift $(A - \sigma I)x = Ax - \sigma x = (\lambda - \sigma)x$

Matrix Power

Inverse

$$A^k x = \lambda^k x$$

 $A^{-1}x = \frac{1}{\lambda}x$

Similarity Transform

Previous transforms left eigenvectors same, changed eigenvalues
 Can we change eigenvectors and retain eigenvalues?
 Let T be an invertible matrix. A similarity transform is

$$T^{-1}AT$$

Let $y = T^{-1}x$ then $(T^{-1}AT)y = T^{-1}ATT^{-1}x = T^{-1}Ax = \lambda T^{-1}x = \lambda y$

Does every Square Matrix have n Linearly Independent Eigenvectors

If A has n linearly independent eigenvectors xi we can create matrix X such that

 $X = \begin{bmatrix} x1 & \dots & xn \end{bmatrix}$

$$AX = X \begin{bmatrix} \lambda_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \lambda_n \end{bmatrix} = XD$$
$$X^{-1}AX = D$$

- A is called diagonalizable
- Not all matrices are diagonalizable

Rayleigh Quotient

We can estimate an eigenvalue if we know an eigenvector x

Rayleigh quotient

$$\frac{x \cdot Ax}{x \cdot x} = \frac{x \cdot \lambda x}{x \cdot x} = \lambda$$

The Power Method

A is an n x n diagonalizable matrix, x an eigenavector

$$\square$$
 It follows that $A^i x = \lambda^i x$

□ This can be used to find the eigenvector x

The Power Method

Given A, and n x n diagonalizable matrix Pick an arbitrary vector x_1

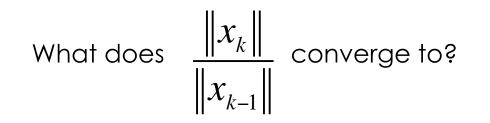
 $x_k = Ax_{k-1}$

Keep going until the ratio $\frac{\|x_k\|}{\|x_{k-1}\|}$ stops changing much

Why does this work?

Why does this work?

The Power Method



The Power Method

- If λ is large or small there could be numerical problems
 What kinds?
- Can it converge if first guess is perpendicular to the eigenvector?
 Yes...round off error means it will converge slowly...
- □ If $|\lambda_1| \approx |\lambda_2|$ method may not converge
- Method limited to symmetric matrices with a dominant eigenvalue

$$A_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \lambda_{1} = 3 \qquad \lambda_{2} = 1$$

$$A_{2} = \begin{bmatrix} 2 & 0.1 \\ 0.1 & 2 \end{bmatrix} \qquad \lambda_{1} = 2.1 \qquad \lambda_{2} = 1.9$$

$$A_{3} = \begin{bmatrix} 2 & -0.1 \\ 0.1 & 2 \end{bmatrix} \qquad \lambda_{1} = 2 + 0.1i \quad \lambda_{2} = 2 - 0.1i$$

=

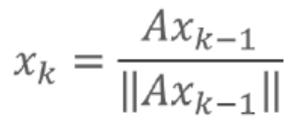
$$\mathbf{r}^{(1)} = \begin{bmatrix} 1.5\\ -0.1 \end{bmatrix} \quad \text{∞-norm scaled} \quad \Rightarrow \quad \mathbf{r}^{(1)} = \begin{bmatrix} 1\\ -0.066667 \end{bmatrix}$$

A₁: symmetric and λ_1 separated from λ_2 \Rightarrow rapid convergence in 11 iterations — Estimate: $\lambda = 2.99998$

A₂: symmetric but λ_1 close to λ_2 \Rightarrow convergence slower 41 iterations — Estimate: $\lambda = 2.09549$ A₃: rotation matrix (not symmetric) and complex eigenvalues \Rightarrow no convergence.

Normalized Power Iteration

What does this converge to?



Why would anyone do that?

Inverse Iteration

What does this converge to?

$$x_k = \frac{A^{-1}x_{k-1}}{\|A^{-1}x_{k-1}\|}$$

Why would anyone do that?

Inverse Iteration with Shift

What does this converge to?

$$x_k = \frac{(A - \sigma I)^{-1} x_{k-1}}{\|(A - \sigma I)^{-1} x_{k-1}\|}$$

Why would anyone do that?

Rayleigh Quotient Iteration

$$x_{k} = \frac{(A - \sigma I)^{-1} x_{k-1}}{\|(A - \sigma I)^{-1} x_{k-1}\|}$$