CS 357: Numerical Methods

Lecture 13:
Eigenvalues and Eigenvectors

Eric Shaffer

Eigenthings

Eigenvectors and eigenvalues
Reveal action and geometry
Lots of applications
Engineering design make sure your bridge won' \dagger spontaneously fall down

Data analysis
Google and PageRank

Eigenvectors

Given matrix A : which vectors \mathbf{r} mapped to a multiple of itself?

$$
A \mathbf{r}=\lambda \mathbf{r} \quad \lambda \in \mathbb{R}
$$

Disregard the "trivial solution" $\mathbf{r}=\mathbf{0}$
In 2D: at most two directions
Symmetric matrices: directions orthogonal (more on that later)
Fixed directions called the eigenvectors

- from the German word "eigen" meaning special or proper

Factor λ called its eigenvalue
Key to understanding geometry of a matrix

Finding Eigenvalues by Hand

How to find the eigenvalues of a 2×2 matrix A

$$
\begin{aligned}
& A \mathbf{r}=\lambda \mathbf{r}=\lambda / \mathbf{r} \\
& {[A-\lambda /] \mathbf{r}=\mathbf{0}}
\end{aligned}
$$

Matrix $[A-\lambda /$] maps a nonzero vector \mathbf{r} to the zero vector $\Rightarrow[A-\lambda I]$ rank deficient matrix \Rightarrow

$$
p(\lambda)=\operatorname{det}[A-\lambda /]=0
$$

Characteristic equation: polynomial equation in λ

- 2D: characteristic equation is quadratic $p(\lambda)$ called the characteristic polynomial

Finding Eigenvalues by Hand

Example:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
p(\lambda)=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=0 \\
p(\lambda)=\lambda^{2}-4 \lambda+3=0 \\
\lambda_{1}=3 \quad \lambda_{2}=1
\end{gathered}
$$

Recall quadratic equation:
$a \lambda^{2}+b \lambda+c=0$ has the solutions

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Finding Eigenvalues by Hand

Example continued
Find \mathbf{r}_{1} and \mathbf{r}_{2} corresponding to
$\lambda_{1}=3$ and $\lambda_{2}=1$
$\left[\begin{array}{cc}2-3 & 1 \\ 1 & 2-3\end{array}\right] \mathbf{r}_{1}=\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right] \mathbf{r}_{1}=\mathbf{0}$
Homogeneous system and rank 1 matrix
\Rightarrow infinitely many solutions
Forward elimination results in

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \mathbf{r}_{1}=\mathbf{0}
$$

Assign $r_{2,1}=1$, then $\mathbf{r}_{1}=c\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Finding Eigenvalues by Hand

Next: $\lambda_{2}=1$, find \mathbf{r}_{2}

$$
\begin{gathered}
{\left[\begin{array}{cc}
2-1 & 1 \\
1 & 2-1
\end{array}\right] \mathbf{r}_{2}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \mathbf{r}_{2}=\mathbf{0}} \\
\mathbf{r}_{2}=c\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{gathered}
$$

Recheck Figure: $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is not stretched - it is mapped to itself
Often eigenvectors normalized for degree of uniqueness

$$
\mathbf{r}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{r}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Dominant eigenvector: eigenvector corresponding to dominant eigenvalue

The Geometry of Eigenvectors

Quadratic polynomials have either no, one, or two real zeroes

If there are no zeroes: then A has no fixed directions
Example: rotations - rotate every vector; no direction unchanged
Rotation by -90°

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Characteristic equation

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
-1 & -\lambda
\end{array}\right|=0 \quad \Rightarrow \quad \lambda^{2}+1=0
$$

Three Ways to Say the Same Thing

$$
\begin{aligned}
& A x=\lambda x \\
& (A-\lambda I) x=0 \\
& x \in N(A-\lambda I)
\end{aligned}
$$

Matrices with Easily Found Eigenthings

- Triangular Matrices
- Eigenvalues are the diagonal entries
\square To find eigenvectors, find $N(A-\lambda)$

Example

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 2
\end{array}\right] \quad \lambda_{i}=4,3,2,1
$$

Starting with $\lambda_{1}=4$:

$$
\left[\begin{array}{cccc}
-3 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -2
\end{array}\right] \mathbf{r}_{1}=\mathbf{0} \quad \Rightarrow \quad \mathbf{r}_{1}=\left[\begin{array}{c}
1 / 3 \\
1 \\
1 \\
0
\end{array}\right]
$$

Repeating for all eigenvalues

$$
\mathbf{r}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{r}_{3}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
1
\end{array}\right] \quad \mathbf{r}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \text { and check: } A \mathbf{r}_{i}=\lambda_{i} \mathbf{r}_{i}
$$

Finding Eigenvalues for Larger n

General $n \times n$ matrix has a degree n characteristic polynomial

$$
p(\lambda)=\operatorname{det}[A-\lambda /]=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdot \ldots \cdot\left(\lambda_{n}-\lambda\right)
$$

Let $\lambda=0$ then $p(0)=\operatorname{det} A=\lambda_{1} \lambda_{2} \cdot \ldots \cdot \lambda_{n}$
Finding zeroes of $n^{\text {th }}$ degree polynomial nontrivial

- Use iterative method to find dominant eigenvalue (see next Section)
- Symmetric matrices always have real eigenvalues
- A and A^{T} have the same eigenvalues
- A is invertible and has eigenvalues λ_{i}, then A^{-1} has eigenvalues $1 / \lambda_{i}$

Eigenvalues and Changes to A

- Scaling

- Shift

$$
(A-\sigma I) x=A x-\sigma \mathrm{x}=(\lambda-\sigma) \mathrm{x}
$$

- Matrix Power $\quad A^{k} x=\lambda^{k} x$
- Matrix Power $\quad A^{k} x=\lambda^{k} x$
- Inverse

$$
\beta A x=\beta \lambda x
$$

$$
A^{-1} x=\frac{1}{\lambda} x
$$

Similarity Transform

㕵 Previous transforms left eigenvectors same, changed eigenvalues

- Can we change eigenvectors and retain eigenvalues?
- Let T be an invertible matrix. A similarity transform is

$$
T^{-1} A T
$$

- Let $y=T^{-1} x$
then $\left(T^{-1} A T\right) y=T^{-1} A T T^{-1} x=T^{-1} A x=\lambda T^{-1} x=\lambda y$

Does every Square Matrix have n Linearly Independent Eigenvectors

- If A has n linearly independent eigenvectors xi we can create matrix X such that

$$
X=\left[\begin{array}{lll}
x 1 & \ldots & x n
\end{array}\right]
$$

$$
\begin{aligned}
& A X=X\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]=\mathrm{XD} \\
& X^{-1} A X=D
\end{aligned}
$$

- A is called diagonalizable
\square Not all matrices are diagonalizable

Rayleigh Quotient

We can estimate an eigenvalue if we know an eigenvector x

- Rayleigh quotient $\quad \frac{x \cdot A x}{x \cdot x}=\frac{x \cdot \lambda x}{x \cdot x}=\lambda$

The Power Method

- A is an $n \times n$ diagonalizable matrix, x an eigenavector
- It follows that $A^{i} x=\lambda^{i} x$
- This can be used to find the eigenvector x

The Power Method

Given A, and $n \times n$ diagonalizable matrix Pick an arbitrary vector x_{1}
$x_{k}=A x_{k-1}$
Keep going until the ratio $\frac{\left\|x_{k}\right\|}{\left\|x_{k-1}\right\|}$ stops changing much

Why does this work?

Why does this work?

The Power Method

What does $\frac{\left\|x_{k}\right\|}{\left\|x_{k-1}\right\|}$ converge to?

The Power Method

- If λ is large or small there could be numerical problems
\square What kinds?
- Can it converge if first guess is perpendicular to the eigenvector?
- Yes...round off error means it will converge slowly...
- If $\left|\lambda_{1}\right| \approx\left|\lambda_{2}\right|$ method may not converge
- Method limited to symmetric matrices with a dominant eigenvalue

$$
\begin{gathered}
A_{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \quad \lambda_{1}=3 \quad \lambda_{2}=1 \\
A_{2}=\left[\begin{array}{cc}
2 & 0.1 \\
0.1 & 2
\end{array}\right] \quad \lambda_{1}=2.1 \quad \lambda_{2}=1.9 \\
A_{3}=\left[\begin{array}{cc}
2 & -0.1 \\
0.1 & 2
\end{array}\right] \quad \lambda_{1}=2+0.1 i \quad \lambda_{2}=2-0.1 i \\
\mathbf{r}^{(1)}=\left[\begin{array}{c}
1.5 \\
-0.1
\end{array}\right] \quad \infty \text {-norm scaled } \quad \Rightarrow \quad \mathbf{r}^{(1)}=\left[\begin{array}{c}
1 \\
-0.066667
\end{array}\right]
\end{gathered}
$$

A_{1} : symmetric and λ_{1} separated from λ_{2}
\Rightarrow rapid convergence in 11 iterations - Estimate: $\lambda=2.99998$
A_{2} : symmetric but λ_{1} close to λ_{2}
\Rightarrow convergence slower 41 iterations - Estimate: $\lambda=2.09549$
A_{3} : rotation matrix (not symmetric) and complex eigenvalues
\Rightarrow no convergence.

Normalized Power Iteration

What does this converge to?

$$
x_{k}=\frac{A x_{k-1}}{\left\|A x_{k-1}\right\|}
$$

Why would anyone do that?

Inverse Iteration

What does this converge to?

$$
x_{k}=\frac{A^{-1} x_{k-1}}{\left\|A^{-1} x_{k-1}\right\|}
$$

Why would anyone do that?

Inverse Iteration with Shift

What does this converge to?

$$
x_{k}=\frac{(A-\sigma I)^{-1} x_{k-1}}{\left\|(A-\sigma I)^{-1} x_{k-1}\right\|}
$$

Why would anyone do that?

Rayleigh Quotient Iteration

$$
x_{k}=\frac{(A-\sigma I)^{-1} x_{k-1}}{\left\|(A-\sigma I)^{-1} x_{k-1}\right\|}
$$

