CS 357: Numerical Methods

Lecture 14: Orthogonal Iteration Singular Value Decomposition

Eric Shaffer

Finding Eigenvectors

- Can we simultaneously (sort of) find all the eigenvectors of A?
- What about this algorithm

 X_0 = arbitrary n x p matrix of rank p for k=1,2,... X_k =AX_{k-1}

Orthogonal Iteration

How about this?

 $\begin{array}{l} X_0 = n \ x \ p \ matrix \ of \ rank \ p \\ for \ k=1,2,\ldots, \\ \# \ compute \ reduced \ QR \ factorization \\ Q_{k+1}R_{k+1} = X_k \\ X_{k+1} = AQ_k \end{array}$

Orthogonal Iteration

 $\begin{array}{l} X_0 = n \ x \ p \ matrix \ of \ rank \ p \\ for \ k=1,2,\ldots, \\ \# compute \ reduced \ QR \ factorization \\ Q_{k+1}R_{k+1} = X_k \\ X_{k+1} = AQ_k \end{array}$

The Schur Form: Finding Eigenvalues

The Schur Form: Finding Eigenvectors

Singular Value Decomposition (SVD)

$A = U\Sigma V^T$

Singular Value Decomposition (SVD)

$A = U\Sigma V^T$

Inversion using SVD

$A = U\Sigma V^T$

Assume A is an n x n matrix

The Pseudo Inverse

When A is not square we can compute the pseudo-inverse

Pseudo Inverse and Least Squares

Notes on Computing the SVD