CS 357: Numerical Methods

Lecture 14:
 Orthogonal Iteration
 Singular Value Decomposition

Eric Shaffer

Finding Eigenvectors

- Can we simultaneously (sort of) find all the eigenvectors of A?
- What about this algorithm

$$
\begin{aligned}
& X_{0}=\text { arbitrary } n \times p \text { matrix of rank } p \\
& \text { for } k=1,2, \ldots \\
& X_{k}=A X_{k-1}
\end{aligned}
$$

Orthogonal Iteration

- How about this?
$\mathrm{X}_{0}=\mathrm{n} \times \mathrm{p}$ matrix of rank p
for $k=1,2, \ldots$.
\#compute reduced QR factorization

$$
\begin{aligned}
& Q_{k+1} R_{k+1}=X_{k} \\
& X_{k+1}=A Q_{k}
\end{aligned}
$$

Orthogonal Iteration

$$
\begin{aligned}
& X_{0}=n \times p \text { matrix of rank } p \\
& \text { for } k=1,2, \ldots \\
& \quad \# \text { compute reduced } Q R \text { factorization } \\
& Q_{k+1} R_{k+1}=X_{k} \\
& X_{k+1}=A Q_{k}
\end{aligned}
$$

The Schur Form: Finding Eigenvalues

The Schur Form: Finding Eigenvectors

Singular Value Decomposition (SVD)

$$
A=U \Sigma V^{T}
$$

Singular Value Decomposition (SVD)

$$
A=U \Sigma V^{T}
$$

Inversion using SVD

$$
A=U \Sigma V^{T}
$$

Assume A is an $n \times n$ matrix

The Pseudo Inverse

When A is not square we can compute the pseudo-inverse

Pseudo Inverse and Least Squares

Notes on Computing the SVD

