CS 357: Numerical Methods

Lecture 15:
 Singular Value Decomposition (SVD) SVD Applications

Eric Shaffer

But First...More Eigenvalues

Markov Chains

Describe a discrete system of states and transitions (it's a graph)

The Markov Property:
Only the current state matters in determining the probability of moving to another state

Markov Chains

$\square m_{i j}$ is the probability of moving from state j to state i
from state

State Transitions

Modeled by a vector matrix product.

In each vector $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle, v_{i}$ indicates the probability of being in state i

$$
A\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
8 \\
\text { ont } \\
2 \\
0
\end{array}\right) \quad A\left(\begin{array}{l}
5 \\
5 \\
0
\end{array}\right)=\left(\begin{array}{c}
.4+3 \\
1+.15 \\
.05
\end{array}\right)
$$

Equilibrium

- Equilibrium is achieved when the probabilities do not change when we compute Av

In other words $A v=\lambda v$

Computing the SVD

Compute the eigenvalues and eigenvectors of $A^{\top} A$ Use Orthogonal iteration

Construct V using the eigenvectors as column vectors

Construct Σ using square roots of the eigenvalues

Find U from $A=U \Sigma V^{\top}$

Computing the SVD

$$
A=u \sum V^{\top}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
u_{1} & u_{2} & u_{m} \\
1 & 1 & \\
1
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & \\
\sigma_{2} & \\
& \\
& \sigma_{n}
\end{array}\right)\left(\begin{array}{c}
-v_{1} \\
-v_{2-} \\
\vdots \\
-v_{n}
\end{array}\right)
$$

Singular values σ_{i} are $\sqrt{\lambda}$, where
λ, is eigenvalue of $A^{\top} A$
U_{i} are eigenvectors of $A A^{\top}$
v_{i}
$\frac{v_{i}}{O\left(m n^{2}+n^{3} \text { work for } m \times n A\right.}$

The Outer Product \dagger

What is UV'? Outer product $\rightarrow n \times m$ mar: x Mathematically, vectors are thought of as $n \times 1$ Example

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

Another way of expressing $A=U \Sigma V^{\top}$

$$
A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{\top}
$$

= Sum of outer products of singular vectors

What do the Singular Values Mean?

$$
\begin{aligned}
\| A_{2} & =\max _{\| \|_{2}=1}\left\|A_{x}\right\|_{2}=\max _{\|x\|_{2}=1}\left\|\Sigma U^{\top} \times\right\|_{2} \\
& =\sigma_{1}
\end{aligned}
$$

Computing the Condition Number

$$
k(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}}
$$

Rank-k Approximations to A
Rank k appoximation $=$ sum of first k outer products

$$
A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{\top}
$$

A_{k} has rank k

Rank-k Approximations to A

$$
\begin{aligned}
& \|A-B\|_{2} \text { minimized bog } B=A_{k} \\
& \|A-B\|_{2}=\left\|A \cdot A_{k}\right\|_{2}=\sigma_{k+1}
\end{aligned}
$$

A_{k} is best rank k approx. to A

The Froebinius Norm*

* Not really a matrix norm

$$
\|A\|_{F}=\sqrt{a_{11}^{2}+a_{12}^{2}+\cdots a_{1 n}^{2}+a_{21}^{2}+\cdots a_{m n}^{2}}
$$

Treat A Like a bin vector and take sit of sum of squares

$$
\begin{array}{r}
\min _{\operatorname{rank} B \leq k}\|A-B\|_{F}=\left\|A-A_{k}\right\|_{F} \\
=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{n}^{2}}
\end{array}
$$

