CS 357: Numerical Methods

Singular Value Decomposition Rank-K Approximations Total Least Squares

Eric Shaffer

Computing the SVD

A=U
$$\leq$$
VT

A mxn

D Find V
 $V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

A mxn

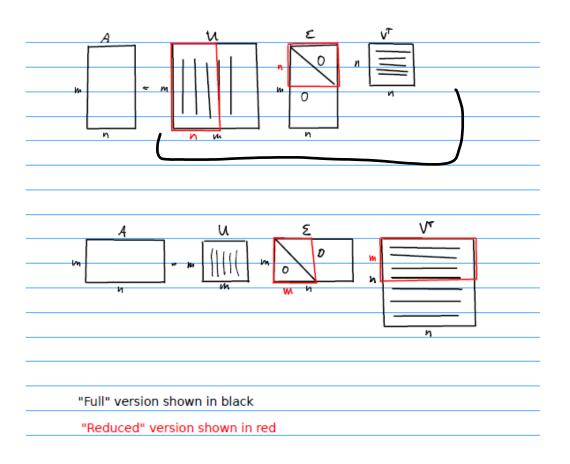
 $V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

A mxn

A mxn

Computing the SVD

Reduced Form of the SVD



Rewriting the SVD

$$A = U \not\subseteq V = \begin{pmatrix} 1 & 1 & 1 \\ 0 & \cdots & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 \\ -v_{n} - v_{n} \end{pmatrix}$$

$$A = \not\subseteq \sigma_{i} \cup v_{i} \cup v_{i} \cup v_{i} \cup v_{n} \cup v_{n}$$

Rank-K Approximations

Rank-K Approximations

Frobenius Norm

||X||_F =
$$\sqrt{x_{11}^2 + x_{12}^2 + \dots + x_{mn}^2}$$

||X-B||_F is minimized by B=X₁

where B is rank 1 matrix

||X-X₁||_F = $\leq 11X_2 - u_1 \sigma_1 V_2 \cdot 11_2$

scalar multiple of Jector u_1

Rank-K Approximations

v. from V is eigenvector of ATA

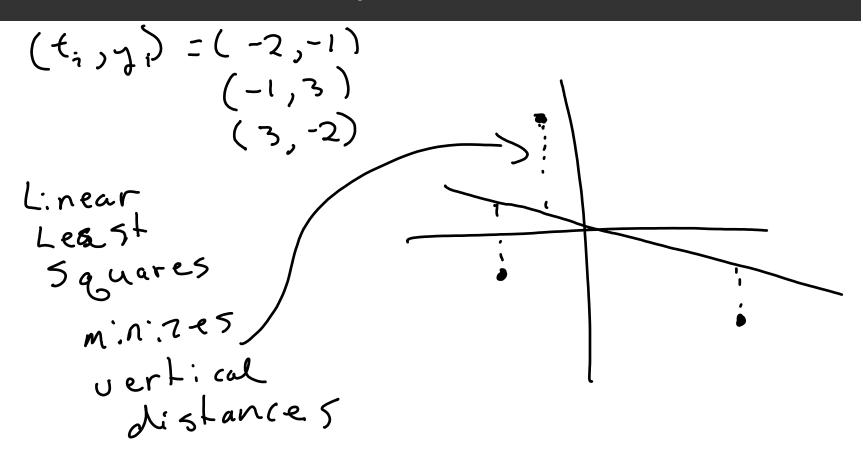
u, from U is principal evec of AA

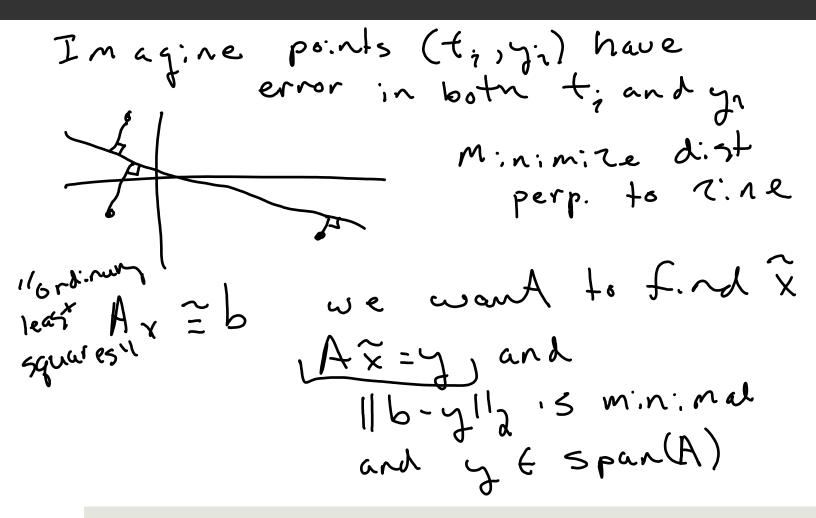
Rank-2 approximation finds

Quectors spanning a plane

naving minimal distance to

datapoints





$$X = -\frac{1}{V_{n+1}, n+1} \begin{bmatrix} V_{1}, n+1 \\ \vdots \\ V_{n+1}, n+1 \end{bmatrix}$$

$$IASJ = U \leq U$$

$$V_{n+1} \Rightarrow 145 \neq (0) V$$