CS 357: Numerical Methods

Principal Component Analysis Interpolation

Eric Shaffer

Principal Component Analysis Revisited
Consider n trials
Each trial produces
an m dim. point

$$
\begin{aligned}
X= & \left(\downarrow^{i \text { measure }}\right. \\
& j \rightarrow \text { trial } \\
& \left(\begin{array}{llll}
P_{11} & x_{12} & \cdots
\end{array}\right)
\end{aligned}
$$

$$
\sum_{\left(\begin{array}{l}
\text { measure } 1 \\
j_{p_{j}}=\left(x_{i j}, x_{2 j}\right)
\end{array}\right.}^{\substack{\text { measure }}}
$$

Principal Component Analysis Revisited
(1) Compute estimate of nean

$$
u_{i}=\frac{1}{n} \sum_{j} x_{i j}
$$

now.wise auerage
(2) $y_{i j}=x_{i j}-u_{i}=Y$
(3) $C=\frac{1}{n-1}\left(Y Y^{\top}\right)$

Principal Component Analysis Revisited
Principal Component are columns of U in $(1 / \sqrt{n-1}) Y=U \Sigma V^{T}$

Interpolation

- Suppose we have the following discrete data

\dagger	-2	0	1
y	-27	-1	0

- Common things we wish to do include:
- Draw a smooth curve through the data points
- Infer values between the points
- Predict future values
\square Approximate the function that generated the values
- In way that allows us to find a derivative or integral
- Compute new values of the function quickly

Interpolation

- Interpolation is the process of fitting a function to data such that the function matches the given data values exactly.
- Such a function is called an interpolant.
- Consider computing a line $y=x_{1}+x_{2} t$ to the data points ($\dagger 1, y 1$) and ($\dagger 2, y 2$)
What does the line give us that the points don't?

What form should an interpolant have?

ㅁ Depends on a number of factors

- How easy should it be to evaluate at other points?
\square Does the application require certain behavior?
- Periodicity
- Convexity
- Monotonicity
- Common choices include
- Polynomials and piecewise polynomials
- Trigonometric functions
- Exponential functions

Existence and Uniqueness

\square Existence and uniqueness are determined by

- The number of data points
- The number of parameters in the interpolant
- Too few parameters \rightarrow interpolant does not exist

- Too many parameters \rightarrow interpolant is not unique
- Example?

Basis Functions

Given a set of data points an interpolant is chosen from a set of basis functions $\phi_{1}(t), \cdots, \phi_{n}(t)$
that span a space of functions.

The interpolant is expressed as a linear combination of the basis functions

Determining the interpolant parametersRequiring that f interpolate $\left(t_{i}, y_{i}\right)$ means

$$
f\left(t_{i}\right)=\sum_{j=1}^{n} x_{j} \mathcal{t}_{j}\left(t_{i}\right)=y_{j}
$$

This is a system of linear equations

$$
A x=y
$$

$$
a_{i j}=\phi_{j}\left(t_{i}\right)
$$

y_{i} are known
x_{i} are unknown coeds.

Existence and Uniqueness

$A x=y$

- If the number of par\&meters = number of data points
\square And what else?
Ais nonsingular

We have a unique interpolant

- If the number of parameters > number of points
- Interpolant is not unique
- Why might that be useful?

Choice of basis functions

The choice of basis functions affectsThe conditioning of AThe amount of work to solve the systemAnything else?
Computational lost of evaluating the intepolant

The monomial basis

$$
\begin{aligned}
& \left.\phi_{j}(t)=t^{i-1} \text { for } j=1, \ldots\right)^{n} \\
& \text { for } \gtrless_{n} \text { data point } \\
& p_{n-1}(t)=x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1}
\end{aligned}
$$

polynomial of degree $n-1$ have n parameters

The Vandermonde matrix

$$
\frac{A x=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{2} & & t_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
x_{2} \\
\vdots \\
y_{n}
\end{array}\right]}{\substack{A z=0 \text { poly w/coefs given by } z \\
\text { has } n \text { zeros } \longrightarrow z=0}}
$$

Example

$$
\begin{aligned}
& (-2,-27) \quad(0,-1)(1,0) \\
& f_{i} t p(t)=x_{1}+x_{2} t+x_{3} t^{2} \\
& A x=\left[\begin{array}{ccc}
1 & -2 & 4 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right] x=\left[\begin{array}{r}
-27 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { solve w/ GE } \begin{array}{l}
-1 \\
x
\end{array} \\
&-4
\end{aligned}
$$

Example

Complexity and Conditioning

What is the complexity of solving the system? $O\left(n^{3}\right)$

- The Vandermonde matrix is often ill-conditioned
 as n gets larger
columns get closer to linearly dependent

Evaluating a polynomial

What is cost of evaluating polynomial of degree $n-1$?

$$
\begin{aligned}
& p_{n-1}=x_{1}+x_{2}++\cdots+x_{n}+-1 \\
& O(n) \text { additions } \\
& m u l t s=1+2 \cdots+n-1 \\
& O\left(n^{2}\right)
\end{aligned}
$$

Horner's Method

$$
\begin{gathered}
p_{n-1}=x_{1}+t\left(x_{2}+\dagger\left(x_{3}+\dagger\left(\ldots\left(x_{n-1}+t x_{n}\right)\right)\right)\right. \\
O(n) \text { adds } \\
O(n) \text { mults }
\end{gathered}
$$

Example

$$
\begin{aligned}
& 1-4 t+5 t^{2}-2 t^{3}+3 t^{4} \\
& =1+t(-4+t(5+t(-2+3 t)))
\end{aligned}
$$

