CS 357: Numerical Methods

Principal Component Analysis Interpolation

Eric Shaffer

Principal Component Analysis Revisited

Consider n trials
Each trial produces measure
an m dim. point 2

$$\begin{pmatrix} measure \\ p_j = (X_{ij}, X_{2j}) \end{pmatrix}$$

 $j \rightarrow tr.al$
 $\begin{pmatrix} Y_{11} \\ X_{21} \end{pmatrix}$ X_{12} )

Principal Component Analysis
Revisited
(D) Compute estimate of mean

$$u_{i} = \frac{1}{n} \stackrel{<}{\underset{j}{\sum}} \stackrel{Y_{i}}{y_{i}}$$

 $no \ w \cdot w i se average$
(D) $\frac{y_{i}}{j_{i}} = \frac{x_{i}}{j_{j}} - u_{i} = \stackrel{\vee}{1}$
(D) $\frac{y_{i}}{j_{i}} = \frac{x_{i}}{j_{j}} - u_{i} = \stackrel{\vee}{1}$
(D) $C = \frac{1}{n-1} (\stackrel{\vee}{1} \stackrel{\vee}{1} \stackrel{\vee}{1})$

Principal Component Analysis <u>Revisited</u>

Principal (omponent
are columns of U
in
$$\left(\frac{V}{\sqrt{n-1}}\right)Y = U \leq V^{T}$$

Interpolation

Suppose we have the following discrete data

†	-2	0	1
У	-27	-1	0

Common things we wish to do include:

Draw a smooth curve through the data points

Infer values between the points

Predict future values

Approximate the function that generated the values

In way that allows us to find a derivative or integral

Compute new values of the function quickly

Interpolation

- Interpolation is the process of fitting a function to data such that the function matches the given data values exactly.
- Such a function is called an *interpolant*.
- Consider computing a line y=x₁ + x₂ t to the data points (t1,y1) and (t2,y2)
- What does the line give us that the points don't?

What form should an interpolant have?

Depends on a number of factors

- How easy should it be to evaluate at other points?
- Does the application require certain behavior?
 - Periodicity
 - Convexity
 - Monotonicity
- Common choices include
 - Polynomials and piecewise polynomials
 - Trigonometric functions
 - Exponential functions

Existence and Uniqueness

Basis Functions

Given a set of data points an interpolant is chosen from a set of basis functions $\mathscr{A}_{n}(\mathcal{A})$, $\mathscr{A}_{n}(\mathcal{A})$

that span a space of functions.

The interpolant is expressed as a linear combination of the basis functions $f(t_{ij}) = \sum_{j=1}^{Z} x_j \cdot y_j \cdot (t_{ij}) = y_j \cdot y$

Determining the interpolant parameters

■ Requiring that f interpolate (t_i, y_i) means $\int (f_i) = \sum_{j=1}^{\infty} x_j \quad (f_i) = j_j$

This is a system of linear equations $A \times = y$ $a_{ij} = \phi_i(t_i)$ $y_i \quad are \quad known$ $y_i \quad are \quad unknown \quad coefs.$

Existence and Uniqueness

We have a unique interpolant

If the number of parameters > number of points

- Interpolant is not unique
- Why might that be useful?

Choice of basis functions

The choice of basis functions affects

□ The conditioning of A

The amount of work to solve the system

Anything else?

The monomial basis

The Vandermonde matrix

Example

$$\begin{array}{c} (-2, -27) \quad (0, -1) \quad (1, 0) \\ f; + \quad p(t) = x_{1} + x_{2} t + x_{3} t^{2} \\ f; + \quad p(t) = x_{1} + x_{2} t + x_{3} t^{2} \\ 1 \quad 0 \quad 0 \\ 1 \quad 0 \quad 0 \\ 1 \quad 1 \quad 1 \\ X = \begin{bmatrix} -27 \\ -1 \\ 0 \\ 0 \\ \end{bmatrix} \\ 5 \\ s \\ s \\ -1 \\ X = \\ -4 \end{array}$$

Example

Complexity and Conditioning

Evaluating a polynomial

• What is cost of evaluating polynomial of degree n-1? $P_{n-1} = \chi_1 + \chi_2 + \cdots + \chi_n + \chi_n$ $O(n) add: +: \circ - \zeta + 1 + 2 \cdots + n - 1$ $mult \zeta = 1 + 2 \cdots + n - 1$ $O(n^2)$

Horner's Method

$$P_{n-1} = x_1 + t(x_2 + t(x_3 + t(\dots(x_{n-1} + tx_n))))$$

 $O(n)$ adds
 $O(n)$ mults

Example

$$\begin{aligned} & (1 - (1 + + 5t^{2} - 2t^{3} + 3t^{4})) \\ &= (1 + t(-(1 + t(5 + t(-2 + 3t)))) \end{aligned}$$