CS 357: Numerical Methods

Lecture 1: Vectors and Python

Eric Shaffer

Homework 0 Stuff

- Vector spaces
- Combinations
- Python

Three slides of Abstract Algebra

Much of linear algebra based just on $+,-, *, /$ and algebraic properties
... / is inverse of *
... - is inverse of +
... addition is commutative: $a+b=b+a$
... multiplication distributes over addition: $a *(b+c)=a * b+a$ * c
.,. etc.
Such a collection of "numbers" with $+,-, *, /$ is called a field. Different fields are like different classes obeying the same interface.

A Field is a set (with operators) with certain

 propertiesIn the book, they discuss three fields:
... The field R of real numbers
... The field C of complex numbers
... The finite field $G F(2)$, which consists of 0 and 1 under $\bmod 2$ arithmetic.

Playing with GF (2)

Galois Field 2
has just two elements: 0 and 1

Addition is like exclusive-or:: | + | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 1 |
| 1 | 1 | 0 |

Evariste Galois, 1811-1832

Multiplication is like ordinary multiplication

\times	0	1
0	0	0
1	0	1

Usual algebraic laws still hold, e.g. multiplication distributes over addition $a \cdot(b+c)=a \cdot b+a \cdot c$

Vector Spaces

What is a vector space?

- A set of objects defined over a Field
\square Usually the field we will work will be the real numbers
- Two operations: vector addition and scalar multiplication
\square To show a set S is a vector space you need to:
\square Show that there is an additive identity element in S
- The set is closed under vector addition
\square The set is closed under scalar multiplication

Example

- What about set of vectors ($a, a / 2$) ?
- (0,0) is in the set and $(0,0)+(a, a / 2)=(a, a / 2)$
\square Additive Identity
- (a,a/2)+(b,b/2)=((a+b),(a+b)/2) is in the set
- Closed under addition
- $\alpha(a, a / 2)=(\alpha a, \alpha a / 2)$ is in the set
\square Closed under multiplication

Example

- What about (a, b) such that $a+b=1$?
- What about (a, b) such that $a+b=0$?

Combinations

- Combinations are weighted sums of vectors
- Constraints on the weights determine the type of combination
- Linear
\square Weights are real numbers
- Affine
- Weights are reals that sum to 1
- Convex

Weights are reals that are non-negative and sum to 1

Linear Combinations

An expression

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

is a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$.
The scalars $\alpha_{1}, \ldots, \alpha_{n}$ are the coefficients of the linear combination.
Example: One linear combination of $[2,3.5]$ and $[4,10]$ is

$$
-5[2,3.5]+2[4,10]
$$

which is equal to $[-5 \cdot 2,-5 \cdot 3.5]+[2 \cdot 4,2 \cdot 10]$
Another linear combination of the same vectors is

$$
0[2,3.5]+0[4,10]
$$

which is equal to the zero vector $[0,0]$.
Definition: A linear combination is trivial if the coefficients are all zero.

Definition: The set of all linear combinations of some vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is called the
span of these vectors
Written $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

Generators

Definition: Let V be a set of vectors. If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors such that $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ then
.,. we say $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a generating set for V;
... we refer to the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ as generators for V.
Example: $\{[3,0,0],[0,2,0],[0,0,1]\}$ is a generating set for R^{3}.
Proof: Must show two things:

1. Every linear combination is a vector in R^{3}.
2. Every vector in R^{3} is a linear combination.

First statement is easy: every linear combination of 3 -vectors over R is a 3vector over
R , and R^{3} contains all 3-vectors over R .
Proof of second statement: Let $[x, y, z]$ be any vector in R^{3}. I must show it is a linear combination of my three vectors....

$$
[x, y, z]=(x / 3)[3,0,0]+(y / 2)[0,2,0]+z[0,0,1]
$$

Affine space

Definition: If \mathbf{c} is a vector and V is a vector space then

$$
\mathbf{c}+V
$$

is called an affine space.
Examples: A plane or a line not necessarily containing the origin.

Affine Combinations

A linear combination $\gamma \mathbf{u}_{1}+\alpha \mathbf{u}_{2}+\beta \mathbf{u}_{3}$ where $\gamma+\alpha+\beta=1$ is an affine combination.

The set of all affine combinations of a set of vectors is the affine hull

- Affine hull of two vectors is a line
- Affine hull of three vectors is a plane
- Affine hull of one vector is what?
- Notice anything about the dimension of the object produced?

Geometry of sets of vectors: convex hull

Earlier, we saw: The u-to-v line segment is

$$
\{\alpha \mathbf{u}+\beta \mathbf{v}: \alpha \in \mathrm{R}, \beta \in \mathrm{R}, \alpha \geq 0, \beta \geq 0, \alpha+\beta=1\}
$$

Definition: For vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ over R , a linear combination

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

is a convex combination if the coefficients are all nonnegative and they sum to 1 .
... Convex hull of a single vector is a point.
... Convex hull of two vectors is a line segment.
... Convex hull of three vectors is a triangle
Convex hull of more vectors is what?

