CS 357: Numerical Methods

Lecture 2: Basis and Numpy

Eric Shaffer

Adapted from the slides of Phillip Klein

Unresolved stuff

O Shape of (X,) versus (X, 1)
Can think of it as single list versus list of lists
Or maybe a row vector versus a column vector

From Stack Overflow:

Here the shape (12,) means the array is indexed by a single index which runs from 0 to 11.
Conceptually, if we label this single index i, the array a looks like this:

i= 0o 1 2 3 4 5 6 7 8 9 10 11

() 1 2 3 4 5 6 7 8 9 (10 | 11

>>> d = a.reshape((12, 1))

the array d is indexed by two indices, the first of which runs from 0 to 11, and the second index

is always 0:
i= o 1 2 3 4 5 6 7 8 9 10 11
j= o 7 0 0) 0 7 0 e 2 e e

0 1 2 3 < 5 6 7 8 91110 | 11

Basis

Definition: Let V be a vector space. A basis for V is a linearly independent set of
generators for V.

Thus a set S of vectors of V is a basis for V if S satisfies two properties:
Property B1 (Spanning) Span S =V, and
Property B2 (Independent) S is linearly independent.

Most important definition in linear algebra.

Basis: Examples
A set S of vectors of V is a basis for V if S satisfies two properties:
Property B1 (Spanning) Span S =V, and
Property B2 (Independent) S is linearly independent.
Example: Let V = Span {[1,0,2,0],[0,—1,0,-2],([2,2,4,4]}.
Is {[1,0,2,0],[0,-1,0,—2],[2,2,4,4]} a basis for V?

The set is spanning but is not independent
1
1[1,0,2,0] —1[0,—1,0,—-2] — 5 [2,2,4,4]=0

so not a basis

However, {[1,0,2,0],[0,—1,0,—2]} is a basis:
» Obvious that these vectors are independent because each has a nonzero entry
where the other has a zero.
» To show
Span {[1,0,2,0],[0,—1,0,—2]} = Span {[1,0,2,0],[0,-1,0,—2],[2,2,4,4]},
can use Superfluous-Vector Lemma:

[2,2,4,4] = 2[1,0,2,0] — 2[0,—1,0, —2]

Basis: Examples

Example: A simple basis for R3: the standard generators
e = [1,0, 0], e = [0, 1,0],83 = [0, 0, l].

» Spanning: For any vector [x,y,z] € R3,

[x,y,z] =x[1,0,0] +y[0,1,0] +z[0,0, 1]

» Independent: Suppose
0=101[1,0,0] + @2[0,1,0] + a3[0,0,1] = [a1, 2, 3]

Then a1 = ar = a3 = 0.

Instead of “standard generators’, we call them standard basis vectors.
We refer to {[1,0,0],[0,1,0],[0,0,1]} as standard basis for R3.

In general the standard generators are usually called standard basis vectors.

René Descartes

¢

Born 1596.
After studying law in college,....

I entirely abandoned the study of letters. Resolving to seek no knowledge other than
that of which could be found in myself or else in the great book of the world, | spent
the rest of my youth traveling, visiting courts and armies, mixing with people of
diverse temperaments and ranks, gathering various experiences, testing myself in the
situations which fortune offered me, and at all times reflecting upon whatever came
my way so as to derive some profit from it.

He had a practice of lying in bed in the morning, thinking about mathematics....

Coordinate systems

In 1618, he had an idea...
while lying in bed and watching a fly on the ceiling.

He could describe the location of the fly in terms of two numbers: its distance from
the two walls.

He realized that this works even if the two walls were not perpendicular.

He realized that you could express geometry in algebra.

» The walls play role of what we now call axes.

» The two numbers are what we now call coordinates

Coordinate systems

In terms of vectors (and generalized beyond two dimensions),

» coordinate system for a vector space V is specified by generators a1,...,a, of V

» Every vector v in V can be written as a linear combination

v:a1a1+"'+anan

» We represent vector v by the vector [ay, ..., a,] of coefficients.
called the coordinate representation of v in terms of a1,...,ap,.

But assigning coordinates to points is not enough. In order to avoid confusion, we
must ensure that each point is assigned coordinates in exactly one way. How?

We will discuss unique representation later.

Coordinate representation
Definition: The coordinate representation of v in terms of a;,...,a, is the vector
[@1,...,ap] such that
V=oia; +---+Qpa,

In this context, the coefficients are called the coordinates.
Example: The vector v = [1,3,5, 3] is equal to
1[1,1,0,0] +2[0,1,1,0] +3[0,0,1,1]

so the coordinate representation of v in terms of the vectors
[1,1,0,0],[0,1,1,0],[0,0,1,1] is [1,2,3].

Example: What is the coordinate representation of the vector [6,3,2,5] in terms of
the vectors [2,2,2,3],[1,0,—1,0],[0,1,0,1]?

Since
[6,3,2,5] =2[2,2,2,3] +2[1,0,—1,0] — 1[0,1,0, 1],

the coordinate representation is [2,2, —1].

Coordinate representation
Definition: The coordinate representation of v in terms of a;,...,a, is the vector
[@1,...,a,] such that
V=oia; +---+Qpaj
In this context, the coefficients are called the coordinates.

Why put the coordinates in a vector?

Makes sense in view of linear-combinations definitions of matrix-vector multiplication.

Llet A=| a1 |--- | a,

» “u is the coordinate representation of v in terms of a1,...,a," can be written as
matrix-vector equation Au = v

» To go from a coordinate representation u to the vector being represented, we
multiply A times u.

» To go from a vector v to its coordinate representation, we can solve the
matrix-vector equation AX = v.
(Because the columns of A are generators for V and v belongs to V, the equation
must have at least one solution.)

Infroduction to NumPy

Slides adapted from Travis E. Oliphant
Enthought, Inc.

O www.enthought.com

O Python has no built-in multi-dimensional array

O NumPy provides a fast built-in object (hdarray) which
Is a multi-dimensional array of a homogeneous datao-

type.

NumPy Array

A NumPy array is an N-dimensional homogeneous
collection of “items” of the same “kind”. The kind
can be any arbitrary structure and is specified
using the data-type.

head

—»| data-type] - array

scalar

ndarray

Infroducing NumPy Arrays

SIMPLE ARRAY CREATION

ARRAY SHAPE

>>> a = array([0,1,2,3])
>>>

array([0, 1, 2, 3])
CHECKING THE TYPE

>>>type(q)
<type 'array'>

NUMERIC ‘TYPE® OF ELEMENTS

>>> a.dtype
dtype(‘int32’)

BYTES PER ELEMENT

>>> g.itemsize # per element
4

shape returns a tuple

listing the length of the

array along each dimension.
>>> a.shape

(4.)

>>> shape(a)

(4,)

ARRAY SIZE

size reports the entire

number of elements in an
array.

>>> Q.size

4

>>> size(q)

4

Intfroducing NumPy Arrays

BYTES OF MEMORY USED

returns the number of bytes
used by the data portion of
the array.

>>> g.nbytes

12

NUMBER OF DIMENSIONS

>>> g.ndim

ARRAY COPY

create a copy of the array
>>> b = a.copy()
>>> b

array([0, 1, 2, 3])

|

CONVERSION TO LIST

convert a numpy array to d
python list.

>>> a.tolist()

[0, 1, 2, 3]

For 1D arrays, list also

works equivalently, but
is slower.

>>> |ist(q)

[0, 1, 2, 3]

Indexing with None

None is a special index that inserts a new axis in the array at the specified
location. Each None increases the arrays dimensionality by 1.

>>> y = a[None, :]

>>> y = a[:,None]
>>> shape (y)

>>> y = a[:,None, None]
>>> shape (y)

>>> shape (y)
(1, 3) (3, 1) (3, 1, 1)
o A
1
0 1|2 0
2

Setting Array Elements

ARRAY INDEXING

>>> q[0]
0

>>> q[0] = 10
>>> (0

[10, 1, 2, 3]

FILL

set all values in an array.
>>> a.fill(0)
>>>

[0, 0, 0, 0]

This also works, but may
be slower.

>>>qal:] =1

>>>

[1, 1,1, 1]

BEWARE OF TYPE
COERSION

>>> a.dtype
ditype('int32')

assigning a float to into # an
iNt32 array will

truncate decimal part.
>>>a[0] = 10.6

>>>

[10, 1, 2, 3]

fill has the same behavior
>>> a.fill(-4.8)
>>>

[-4, -4, -4, -4]

Multi-Dimensional Arrays

MULTI-DIMENSIONAL ARRAYS

>>>qa =array([[0, 1, 2, 3],
[10,11,12,13]])

>>>
array([[O, 1, 2, 3],
[10,11,12,13]])

(ROWS,COLUMNS)

>>> a.shape
(2, 4)
>>> shape(a)
(2, 4)

ELEMENT COUNT

>>> Q.5ize
8

>>> size(Q)
8

NUMBER OF DIMENSIONS

>>> g.ndims
2

GET/SET ELEMENTS

>>> (1,3
13 column
row
>>> a[1,3] =-1
>>>
array([[0, 1, 2, 3],
[10,11,12,-1]])

ADDRESS FIRST ROW USING

SINGLE INDEX

>>> q[1]
array([10, 11, 12, -1])

Array Slicing

SLICING WORKS MUCH LIKE
STANDARD PYTHON SLICING

>>> q[0,3:5]
array([3, 4])

>>> qA[4:,4:]
array([[44, 45],
[54, 53]])

>>> ql:,2]
array([2,12,22,32,42,52])

STRIDES ARE ALSO POSSIBLE

Slices Are References

Slices are references to memory in original array. Changing values in a slice
also changes the original array.

>>> g = array((0,1,2,3,4))

create aslice containing only the
last element of a

>>> b = q[2:4]

>>>Pp[0] = 10

changing b changed al
>>>

array([1, 2, 10, 3, 4])

Fancy Indexing

INDEXING BY POSITION INDEXING WITH BOOLEANS

>>> a = arange(0,80,10) >>> mask = array([0,1,1,0,0,1,0,0],
dtype=bool)

fancy indexing # fancy indexing

>>>vy =ql[l, 2, -3]] >>>y = a[mask]

>>> print y >>> print y

[10 20 50] [10,20,50]

using take # Using compress

>>> vy = take(q,[1,2,-3]) >>>y = compress(mask, a)

>>> print y >>> print y

[10 20 50] [10,20,50]

20

Fancy Indexing in 2D

>>>q[(0,1,2,3,4),(1,2.3,4,5)]
array([1, 12, 23, 34, 45])

>>> al[3:,[0, 2, 5]]

array([[30, 32, 35],
40, 42, 45]])
[50, 52, 55]])

>>> mask = array([1,0,1,0,0,1],

dtype=bool)
>>> a[mask,?2]
array([2,22,52])

5

14

15

24
34

44

25
|35|

45|

54

Jss|

Unlike slicing, fancy indexing

creates copies instead of
views into original arrays.

21

Data-types

O There are two related concepts of “type”
The data-type object (dtype)

The Python “type” of the object created from a single array
item (hierarchy of scalar types)

O The dtype object provides the details of how to
inferpret the memory for an item. It's an instance
of a single dtype class.

O The “type” of the extracted elements are true
Python classes that exist in a hierarchy of Python
classes

O Every dtype object has a type attribute which
provides the Python object returned when an
element is selected from the array

NumPy dfypes

Basic Type Available NumPy types Comments
Boolean bool Elements are 1 byte in size
Integer int8, intl6, int32, into4, int defaults to the size of int in
intl28, int C for the platform
Unsigned uint8, uintlé, uint32, uint64, | uint defaults to the size of
Integer uintl28, uint unsigned int in C for the platform
Float float32, float64, float, Float is always a double precision
longfloat, floating point value (64 bits).
longfloat represents large
precision floats. Its size is
platform dependent.
Complex complex64, complexl1l28, complex | The real and complex elements of a
complex64 are each represented by
a single precision (32 bit) wvalue
for a total size of 64 bits.
Strings str, unicode Unicode is always UTF32 (UCS4)
Object object Represent items in array as Python
objects.
Records void Used for arbitrary data structures

in record arrays.

23

Built-in “scalar” types

v v X Yo,

 flexible

bool_ object_ + number

r integer W r inexact j Echaracterf void

Esignedintegeri Eunsignedintegeri : floating ¢ * complexfloating :

e P L g e

str_

>
—»{ unicode

! single

csingle

>
—> complex_|
_)

short ushort

> >
> >
| inte | uintc e
> >
> >

2

| longfloat clongfloat

int_ uint

longlong ulonglong

Array Calculation Methods

SUM FUNCTION

>>> a = array([[1.2,3],
[4,5,6]], float)

Sum defaults to summing all
all array values.

>>> sum(Q)

21.

supply the keyword axis to
sum along the Oth axis.
>>> sum(a, axis=0)

array([5., 7., 9.])

supply the keyword axis to
sum along the last axis.
>>>sum(a, axis=-1)
array([6., 15.])

SUM ARRAY METHOD

The a.sum() defaults to

summing *all* array values
>>> a.sum()

21.

Supply an axis argument to
sum along a specific axis.
>>> a.sum(axis=0)

arrcy([5., 7., 9.])

PRODUCT

product along columns.
>>> a.prod(axis=0)
array([4., 10., 18.])

functional form.
>>> prod(a, axis=0)
array([4., 10., 18.])

25

Min/Max

MIN

>>> q = array([2.,3.,0.,1.]) >>>
a.min(axis=0)

0.

use Numpy's amin() instead
of Python's builtin min()

for speed operations on

multi-dimensional arrays.
>>> amin(a, axis=0)

0.

ARGMIN

Find index of minimum value.
>>> g.argmin(axis=0)

2

functional form

>>> argmin(a, axis=0)

2

MAX

>>> g = array([2.,1.,0.,3.]) >>>
a.max(axis=0)

3.

functional form

>>> amax(a, axis=0)
3.

ARGMAX

Find index of maximum value.
>>> g.argmax(axis=0)

]

functional form

>>> argmax(a, axis=0)

|

26

Staftistics Array Methods

STANDARD DEV./VARIANCE

>>> a = array([[1.2,3],
[4,5,6]], float)

mean value of each column
>>> a.mean(axis=0)

array([2.5, 3.5, 4.5])

>>> mean(a, axis=0)

array([2.5, 3.5, 4.5])

>>> average(a, axis=0)

array([2.5, 3.5, 4.5])

average can also calculate
a weighted average

>>> average(a, weights=[1,2],
. axis=0)

array([3., 4., 5.])

Standard Deviation
>>> g.std(axis=0)
array([1.5, 1.5, 1.5])

Variance

>>> g.var(axis=0)
array([2.25, 2.25, 2.25])
>>> var(a, axis=0)
array([2.25, 2.25, 2.25])

27

Other Array Methods

CLIP

Limit values to a range

>>>qa = array([[1,2,3].
[4,5,6]], float)

Set values < 3 equal to 3.
Set values > 5 equal to 5.

>>> a.clip(3,95)

>>>

array([[3., 3., 3.],
[4., 5., 5]])

ROUND

Round values in an array.

Numpy rounds to even, so
1.5 and 2.5 both round to 2.
>>>a = array([1.35, 2.5, 1.5])
>>> a.round()

array([1., 2., 2.])

Round to first decimal place.
>>> a.round(decimals=1)
array([1.4, 2.5, 1.5])

POINT TO POINT

Calculate max — min for
array along columns

>>> g.ptp(axis=0)

array([3.0, 3.0, 3.0])

max — min for entire array.
>>> q.ptp(axis=None)

5.0

28

Summary of (most) array

attributes/methods

BASIC ATTRIBUTES

QO v Y Y W

.dtype - Numerical type of array elements. float32, uint8, etc.
.shape - Shape of the array. (m,n,o,...)

.size — Number of elements in entire array.

.1temsize - Number of bytes used by a single element in the array.
.nbytes - Number of bytes used by entire array (data only).

.ndim — Number of dimensions in the array.

SHAPE OPERATIONS

vOY Y Y Y Y YWY

.flat - An iterator to step through array as if it is 1D.
.flatten() - Returns a 1D copy of a multi-dimensional array.
.ravel () - Same as flatten(), but returns a ‘view if possible.
.resize(new size) - Change the size/shape of an array in-place.
.swapaxes (axisl, axis2) - Swap the order of two axes 1n an array.
.transpose (*axes) - Swap the order of any number of array axes.
.T — Shorthand for a.transpose /()

.squeeze () — Remove any length=1 dimensions from an array.

29

Summary of (most) array

attributes/methods

FILL AND COPY

a.copy() — Return a copy of the array.
a.fill (value) - Fill array with a scalar value.

CONVERSION / COERSION

a.tolist () — Convert array into nested lists of wvalues.
a.tostring() - raw copy of array memory into a python string.
a.astype (dtype) — Return array coerced to given dtype.
a.byteswap (False) - Convert byte order (big <-> little endian).

COMPLEX NUMBERS

a.real - Return the real part of the array.

a.lmag - Return the imagilnary part of the array.

a.conjugate () — Return the complex conjugate of the array.

a.conj ()— Return the complex conjugate of an array. (same as conjugate)

30

Summary of (most) array

attributes/methods

SAVING

a.
a.
a.

dump (file) - Store a binary array data out to the given file.
dumps () - returns the binary pickle of the array as a string.
tofile (fid, sep="", format="%s") Formatted ascii output to file.

SEARCH / SORT

QoY Y Y

.nonzero() - Return indices for all non-zero elements in a.
.sort (axis=-1) - Inplace sort of array elements along axis.
.argsort (axis=-1) - Return indices for element sort order along axis.
.searchsorted(b) — Return index where elements from b would go in a.

ELEMENT MATH OPERATIONS

(UREUR R

.clip(low, high) - Limit values 1in array to the specified range.
.round (decimals=0) — Round to the specified number of digits.
.cumsum (axis=None) - Cumulative sum of elements along axis.

.cumprod (axis=None) - Cumulative product of elements along axis.

31

Summary of (most) array

attributes/methods

REDUCTION METHODS

All the following methods “reduce” the size of the array by 1 dimension
by carrying out an operation along the specified axis. If axis is
None, the operation i1s carried out across the entire array.

a.sum(axis=None) - Sum up values along axis.

a.prod(axis=None) - Find the product of all values along axis.

a.min (axis=None)—- Find the minimum value along axis.

a.max (axis=None) - Find the maximum value along axis.

a.argmin (axis=None) - Find the index of the minimum value along axis.
a.argmax (axis=None) - Find the index of the maximum value along axis.
a.ptp(axis=None) - Calculate a.max(axis) — a.min(axis)

a.mean (axis=None) - Find the mean (average) value along axis.
a.std(axis=None) - Find the standard deviation along axis.

a.var (axis=None) - Find the variance along axis.

a.any (axis=None) - True if any value along axis 1is non-zero. (or)

D

.all (axis=None) - True if all values along axis are non-zero. (and)

32

Array Operations

SIMPLE ARRAY MATH

>>> q = array([1,2,3,4])
>>> b = array([2,3,4,5])
>>> g+ Db

array([3, 5, 7, 9])

Numpy defines the following

y constants:
pi = 3.14159265359
e =2.71828182846

MATH FUNCTIONS

Create array from 0 to 10
>>>x = arange(11.)

mulfiply entire array by
scalar value

>>>qa = (2*pi)/10.

>>>
0.62831853071795862
>>> g*x

array([0.,0.628,...,6.283])
inplace operations
>>> x *= (g

>>> X

array([0.,0.628,...,6.283])
apply functions to array.
>>>y = sin(x)

33

Universal Functions

O ufuncs are objects that rapidly evaluate a function
element-by-element over an array.

O Core piece is a 1-d loop written in C that performs
the operation over the largest dimension of the
array

O For 1-d arrays it is equivalent to but much faster than
list comprehension

>>> type (N.exp) |

<type 'numpy.ufunc'>

>>> x = array([1,2,3,4,5])

>>> print N.exp (x)

[2.71828183 7.38905061 20.08553692
54.59815003 148.4131591]

>>> print [math.exp(val) for val in x]
[2.7182818284590451,
7.3890560989306504,20.085536923187668,
54.598150033144236,148.4131591025766]]

Mathematic Binary Operators

a+ b > add(a,b) a*b > multiply(a,b)
a-b > subtract(a,b) a/b - divide(a,b)
a % b > remainder(a,b) a** b > power(q,b)

MULTIPLY BY A SCALAR ADDITION USING AN OPERATOR
FUNCTION

>>>a = array((1,2))
>>> *3. >>> add(a,b)
array([3., 6.]) array([4, 6])

ELEMENT BY ELEMENT &\ IN PLACE OPERATION
ADDITION

Overwrite contents of a.
Saves array creation

>>>a = array([1,2])
>>> P = array([3.,4])

overhead
>>>a+b >>> add(a,b,a) # a+=Db
array([4, é]) array([4, 6])

>>>

array([4, 6])

35

Comparison and Logical Operators

equal (==) not equal (1=) greater (>)
greater equal (>=) less (<) less equal (<=)
logical and logical or logical xor

logical not

2D EXAMPLE

>>>qa = array(((1,2,3.4),(2,3.4,5)))

>>> b = array(((1,2,5,4),(1,3.4,5)))

>>> q ==

array([[True, True, False, True],
[False, True, True, Truel]])

functional equivalent

>>> equal(a,b)

array([[True, True, False, True],
[False, True, True, Truel]])

36

Broadcasting

When there are multiple inpufts, then they all must
be “broadcastable” to the same shape.

All arrays are promoted to the same number of dimensions
(by pre-prending 1's to the shape)

All dimensions of length 1 are expanded as determined by
other inputs with non-unit lengths in that dimension.

>>> x = [1,2,3,4];
iii grjmg [;O;ééz(g] g;)[ng]] X has shape (4,) the ufunc sees
(11 12 13 14] it as having shape (1,4)

(21 22 23 24]

[31 32 33 34] y has shape (3,1)

]
>>> x = array(x
>>> y = array(y
>>> print x+y
[[11 12 13 14]

[21 22 23 24]
[31 32 33 34]]

) |
) The ufunc result has shape (3,4)

Array Broadcasting

4x3 4x3
0]1]2 0/o0]|o0 0|1]2 0/o0]|o0
0|12 . 1010 |10 o112 . 101010 _
0|12 20|20 20 012 20|20 20
0l1]2 303030 0l1]2 30 (3030
4x3 3
ololo 01]2 o|lo|o 01]2 0112
10|10 10 . _ [10]10]10 . _ ol11 12
20|20 20 20|20 20 20121 | 22
30|30 30 30 (3030
stretch| 393132
4x1] 3
0 01]2 0 01]2
10 10
+ = + =
20 20
30 30 l

e

Sl‘rel‘ch StretCh
38

Broadcasting Rules

The ftrailing axes of both arrays must either be 1 or have the same size for
broadcasting to occur. Otherwise, a “ValueError: frames

are not aligned’ exception is thrown.

mismatch!
X3 4
o(0(0 0|1 3
10(10 |10 + —
202020

3030

39

Broadcasting in Action

10

20

30

>>>qa = array((0,10,20,30))
>>> P = array((0,1,2))
>>>vy =qal:;, None] + b

10

11

12

20

21

22

30

31

32

40

