CS 357: Numerical Methods

Lecture 3: Matrices and Vector Norms

Eric Shaffer

Adapted from the slides of Phillip Klein

Matrices

What is a matrix? Traditional answer

Neo: What is the Matrix?
Trinity: The answer is out there, Neo, and it's looking for you, and it will find you if you want it to. The Matrix, 1999

Traditional notion of a matrix: two-dimensional array.

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
10 & 20 & 30
\end{array}\right]
$$

- Two rows: $[1,2,3]$ and $[10,20,30]$.
- Three columns: [1, 10], [2, 20], and [3, 30].
- A 2×3 matrix.

For a matrix A, the i, j element of A

- is the element in row i, column j
- is traditionally written $A_{i, j}$
- but we will use $A[i, j]$

Column space and row space

One simple role for a matrix: packing together a bunch of columns or rows
Two vector spaces associated with a matrix M :

Definition:

- column space of $M=$ Span \{columns of $M\}$ Written Col M
- row space of $M=$ Span \{rows of M \} Written Row M

Examples:

- Column space of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 10 & 20 & 30\end{array}\right]$ is Span $\{[1,10],[2,20],[3,30]\}$. In this case, the span is equal to Span $\{[1,10]\}$ since $[2,20]$ and $[3,30]$ are scalar multiples of $[1,10]$.
- The row space of the same matrix is Span $\{[1,2,3],[10,20,30]\}$. In this case, the span is equal to Span $\{[1,2,3]\}$ since $[10,20,30]$ is a scalar multiple of $[1,2,3]$.

Transpose

Transpose swaps rows and columns.

Matrices are Vectors

Matrices as vectors

Soon we study true matrix operations. But first....
A matrix can be interpreted as a vector:

- an $R \times S$ matrix is a function from $R \times S$ to \mathbb{F},
- so it can be interpreted as an $R \times S$-vector:
- scalar-vector multiplication
- vector addition

Null Space

Null space of a matrix

Definition: Null space of a matrix A is $\{\mathbf{u}: A * \mathbf{u}=\mathbf{0}\}$. Written Null A

Example:

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 9
\end{array}\right] *[0,0,0]=[0,0]
$$

so the null space includes $[0,0,0$]

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 9
\end{array}\right] *[6,-1,-1]=[0,0]
$$

so the null space includes $[6,-1,-1]$
By dot-product definition,

$$
\left.\left[\frac{\mathbf{a}_{1}}{\vdots}\right] * \mathbf{\mathbf { a } _ { m }}\right]=\left[\mathbf{a}_{1} \cdot \mathbf{u}, \ldots, \mathbf{a}_{m} \cdot \mathbf{u}\right]
$$

Null space of a matrix

We just saw:

$$
\begin{aligned}
\mathbf{a}_{1} \cdot \mathbf{x} & =0 \\
\vdots & \\
\mathbf{a}_{m} \cdot \mathbf{x} & =0
\end{aligned}
$$

This shows: Null space of a matrix is a vector space.
Can also show it directly, using algebraic properties of matrix-vector multiplication:
Property V1: Since $A * \mathbf{0}=\mathbf{0}$, the null space of A contains $\mathbf{0}$
Property V2: if $\mathbf{u} \in \operatorname{Null} A$ then $A *(\alpha \mathbf{u})=\alpha(A * \mathbf{u})=\alpha \mathbf{0}=\mathbf{0}$ so $\alpha \mathbf{u} \in \operatorname{Null} A$
Property V3: If $\mathbf{u} \in \operatorname{Null} A$ and $\mathbf{v} \in \operatorname{Null} A$ then $A *(\mathbf{u}+\mathbf{v})=A * \mathbf{u}+A * \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}$ so $\mathbf{u}+\mathbf{v} \in \operatorname{Null} A$

Solution space of a matrix-vector equation

Earlier, we saw:

If \mathbf{u}_{1} is a solution to the linear system | $\mathbf{a}_{1} \cdot \mathbf{x}$ | $=$ | β_{1} |
| :---: | :---: | :---: |
| | \vdots | |
| $\mathbf{a}_{m} \cdot \mathbf{x}$ | $=$ | β_{m} |

then the solution set is $\mathbf{u}_{1}+\mathcal{V}$,

$$
\text { where } \mathcal{V}=\text { solution set of } \begin{array}{ccc}
\mathbf{a}_{1} \cdot \mathbf{x} & = & 0 \\
& \vdots & \\
\mathbf{a}_{m} \cdot \mathbf{x} & = & 0
\end{array}
$$

Restated: If \mathbf{u}_{1} is a solution to $A * \mathbf{x}=\mathbf{b}$ then solution set is $\mathbf{u}_{1}+\mathcal{V}$ where $\mathcal{V}=$ Null A

Solution space of a matrix-vector equation

Proposition: If \mathbf{u}_{1} is a solution to $A * \mathbf{x}=\mathbf{b}$ then solution set is $\mathbf{u}_{1}+\mathcal{V}$ where $\mathcal{V}=$ Null A

Example:

- Null space of $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 9\end{array}\right]$ is Span $\{[6,-1,-1]\}$.
- One solution to $\left.\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 9\end{array}\right] * \mathbf{x}=[1,1]$ is $x=[-1,1,0]$.
- Therefore solution set is $[-1,1,0]+\operatorname{Span}\{[6,-1,-1]\}$
- For example, solutions include
- $[-1,1,0]+[0,0,0]$
- $[-1,1,0]+[6,-1,-1]$
- $[-1,1,0]+2[6,-1,-1]$

Solution space of a matrix-vector equation

Proposition: If \mathbf{u}_{1} is a solution to $A * \mathbf{x}=\mathbf{b}$ then solution set is $\mathbf{u}_{1}+\mathcal{V}$ where $\mathcal{V}=\operatorname{Null} A$

- If \mathcal{V} is a trivial vector space then \mathbf{u}_{1} is the only solution.
- If \mathcal{V} is not trivial then \mathbf{u}_{1} is not the only solution.

Corollary: $A * \mathbf{x}=\mathbf{b}$ has at most one solution iff $\operatorname{Null} A$ is a trivial vector space.

Question: How can we tell if the null space of a matrix is trivial?

Answer comes later...

Gaussian Elimination Review Solving Systems by Hand

The generic lower and upper triangular matrices are

$$
L=\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & & 0 \\
\vdots & & \ddots & \vdots \\
l_{n 1} & & \cdots & l_{n n}
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & u_{n n}
\end{array}\right]
$$

The triangular systems

$$
L y=b \quad U x=c
$$

are easily solved by forward substitution and backward substitution, respectively

Non-Triangular Example

Solve

$$
\begin{aligned}
x_{1}+3 x_{2} & =5 \\
2 x_{1}+4 x_{2} & =6
\end{aligned}
$$

Subtract 2 times the first equation from the second equation

$$
\begin{aligned}
x_{1}+3 x_{2} & =5 \\
-2 x_{2} & =-4
\end{aligned}
$$

This equation is now in triangular form, and can be solved by backward substitution.

Non-Triangular Example

The elimination phase transforms the matrix and right hand side to an equivalent system

$$
\begin{array}{rlrl}
x_{1}+3 x_{2} & =5 \\
2 x_{1}+4 x_{2} & =6 & \longrightarrow & x_{1}+3 x_{2}
\end{array}=501-2 x_{2}=-4
$$

The two systems have the same solution. The right hand system is upper triangular.
Solve the second equation for x_{2}

$$
x_{2}=\frac{-4}{-2}=2
$$

Substitute the newly found value of x_{2} into the first equation and solve for x_{1}.

$$
x_{1}=5-(3)(2)=-1
$$

3 by 3 Example

When performing Gaussian Elimination by hand, we can avoid copying the x_{i} by using a shorthand notation.
For example, to solve:

$$
A=\left[\begin{array}{rrr}
-3 & 2 & -1 \\
6 & -6 & 7 \\
3 & -4 & 4
\end{array}\right] \quad b=\left[\begin{array}{l}
-1 \\
-7 \\
-6
\end{array}\right]
$$

Form the augmented system

$$
\tilde{A}=\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
6 & -6 & 7 & -7 \\
3 & -4 & 4 & -6
\end{array}\right]
$$

The vertical bar inside the augmented matrix is just a reminder that the last column is the b vector.

3 by 3 Example

Add 2 times row 1 to row 2, and add (1 times) row 1 to row 3

$$
\tilde{A}_{(1)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & -2 & 3 & -7
\end{array}\right]
$$

Subtract (1 times) row 2 from row 3

$$
\tilde{A}_{(2)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & 0 & -2 & 2
\end{array}\right]
$$

3 by 3 Example

The transformed system is now in upper triangular form

$$
\tilde{A}_{(2)}=\left[\begin{array}{rrr|r}
-3 & 2 & -1 & -1 \\
0 & -2 & 5 & -9 \\
0 & 0 & -2 & 2
\end{array}\right]
$$

Solve by back substitution to get

$$
\begin{aligned}
& x_{3}=\frac{2}{-2}=-1 \\
& x_{2}=\frac{1}{-2}\left(-9-5 x_{3}\right)=2 \\
& x_{1}=\frac{1}{-3}\left(-1-2 x_{2}+x_{3}\right)=2
\end{aligned}
$$

Finding an Inverse via Gaussian Elimination

- Append the identity matrix to the given matrix

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] . \\
{[A \mid I] } & =\left[\begin{array}{rrr|rrr}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Finding an Inverse via Gaussian Elimination

- Transform the Left Hand Side (LHS) to transform it to the identity matrix

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{rrr|rrr}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] .} \\
& {[I \mid B]=\left[\begin{array}{lll|lll}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right] .}
\end{aligned}
$$

Barycentric Coordinates for Triangles

- Describe location of point in a triangle in relation to the vertices
$\square \mathrm{p}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ where the following are true
- $\mathrm{p}=\lambda_{1} \mathrm{a}+\lambda_{2} \mathrm{~b}+\lambda_{3} \mathrm{c}$
- $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$

Digression: Barycentric Coordinates

- Grab some code....
http://courses.engr.illinois.edu/cs519/CS357/barycentric.py
- Questions:
\square What kind of combination are barycentric coordinates
- What kind of combination are the "inside" points
\square Any ideas about what applications barycentric coordinates might have?

Barycentric Coordinates for Triangles

$$
\lambda_{1}=\frac{\left(y_{2}-y_{3}\right)\left(x-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y-y_{3}\right)}{\operatorname{det}(T)}=\frac{\left(y_{2}-y_{3}\right)\left(x-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{3}\right)\left(x_{1}-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y_{1}-y_{3}\right)}
$$

$$
\lambda_{2}=\frac{\left(y_{3}-y_{1}\right)\left(x-x_{3}\right)+\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)}{\operatorname{det}(T)}=\frac{\left(y_{3}-y_{1}\right)\left(x-x_{3}\right)+\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{3}\right)\left(x_{1}-x_{3}\right)+\left(x_{3}-x_{2}\right)\left(y_{1}-y_{3}\right)}
$$

$$
\lambda_{3}=1-\lambda_{1}-\lambda_{2} .
$$

Coordinates are the signed area of the opposite subtriangle divided by area of the triangle

Barycentric Coordinates for Triangles

Point in Triangle Test for Production Rendering

Interpolating Functions on Triangles

ㅁ To interpolate a function sampled at the vertices we just do:
$f(p)=\lambda_{1} f(a)+\lambda_{2} f(b)+\lambda_{3} f(c)$
inside the triangle.....

Vector Norms...

Vector norms are functions that map a vector to a real number
You can think of it as measuring the magnitude of the vector
The norm you know is the 2-norm:

You can use it to measure the distance between two points

Vector Norms...

Vector norms are functions that map a vector to a real number
You can think of it as measuring the magnitude of the vector
The norm you know is the 2-norm:

$$
\begin{aligned}
& \|v\|_{2}=\sqrt{\sum v_{i}^{2}} \\
& v=\left\langle v_{0}, v_{1}, \ldots, v_{d-1}\right\rangle
\end{aligned}
$$

You can use it to measure the distance between two points
Compute a vector $v=\mathrm{p} 2-\mathrm{p} 1$ and take the norm of v

Vector Norms...

Vector norms are functions that map a vector to a real number
You can think of it as measuring the magnitude of the vector

Vectors:

$$
\begin{aligned}
& \|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
& \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)=\max _{i}\left(\left|x_{i}\right|\right)
\end{aligned}
$$

Vector Norms...some properties

$$
\begin{aligned}
& \|\alpha x\|=|\alpha|\|x\| \\
& \|A x\| \leqslant\|A\|\|x\|
\end{aligned}
$$

Triangle Inequality $\|x+y\| \leqslant\|x\|+\|y\|$

Visualizing 1-ball of Norms

Where does the norm equal 1 in the 2D Euclidean plane

Matrix Norms

Matrices:

$$
\begin{aligned}
\|A\| & =\max _{x \neq 0} \frac{\|A x\|}{\|x\|} \\
\|A\|_{p} & =\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \\
\|A\|_{1} & =\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
\|A\|_{\infty} & =\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

