CS 357: Numerical Methods

Lecture 4: Matrix Norms

Eric Shaffer

Vector Norms...

Vector norms are functions that map a vector to a real number
You can think of it as measuring the magnitude of the vector
The norm you know is the 2-norm:

$$
\begin{aligned}
& \|v\|_{2}=\sqrt{v_{i}^{2}} \\
& v=\left\langle v_{0}, v_{1}, \ldots, v_{d 1}\right\rangle
\end{aligned}
$$

You can use it to measure the distance between two points
Compute a vector $v=\mathrm{p} 2-\mathrm{p} 1$ and take the norm of v

Requirements for a Norms...

All of the following must be true for some function to be a norm

$$
\begin{aligned}
& \|x\| \geq 0 \\
& \|x+y\| \leq\|x\|+\|y\| \\
& \|x\|=\mid \quad\|x\| \\
& \|x\|=0 \Leftrightarrow x=0
\end{aligned}
$$

Vector Norms...

Vector norms are functions that map a vector to a real number
You can think of it as measuring the magnitude of the vector

Vectors:

$$
\begin{aligned}
\|x\|_{p} & =\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
\|x\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|=\sum_{i=1}^{n}\left|x_{i}\right| \\
\|x\|_{\infty} & =\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)=\max _{i}\left(\left|x_{i}\right|\right)
\end{aligned}
$$

Visualizing 1-ball of Norms

Where does the norm equal 1 in the 2D Euclidean plane

Measuring Error

- Norms measure distance between vectors
\square The distance between v1 and v2 is $\|v 1 \quad v 2\|$
- Imagine we have an approximation x_{0} to some true value x So... $x=x_{0}+\Delta x$
\square The absolute error is Δx
- ...for vectors we could use $\|\Delta x\|$
- Can this tell us if an answer is good?

Absolute Error - Example

$$
\begin{aligned}
& \left|x-x_{0}\right|=0.1 \\
& \text { if } x=1000000 \\
& \text { if } x=0.1 \tau_{0 b a d}
\end{aligned}
$$

Relative Error

- Relative error is defined as the absolute error divide by the true value

$$
\text { error }_{\text {rel }}=\frac{\|\Delta x\|}{\|x\|}
$$

- This allows us some way to assess the magnitude or error
- Any obvious issues with computing error?

Relative Error

- We usually don't know the true value x
- So....
- If we know an error range, compute an upper bound
- Take the largest possible error value use that

Precision and Accuracy

- Precision: number of digits with which a number is expressed
- Accuracy:
number of correct significant digits in approximating a value

- Rule of thumb, if a number has a relative error of about 10^{-p} then it has about p correct significant digits in its decimal representation

Relative Error - Example

$$
\begin{gathered}
1 / g=0.125 \approx .12 \\
\Delta x=0.005 \\
\text { rel }=\frac{0.005}{0.125}=0.04 \\
4 \% \text { error }
\end{gathered}
$$

Condition Number

- We'll be interested in numerical methods (algorithms)
- How much does a method amplify the error in an input
- Every input has some error
- Every output has some error...
- Condition number is the maximum ratio of output error to input error over all possible inputs

$$
C=\begin{aligned}
& \max _{i} \sim
\end{aligned}
$$

$\| \Delta x_{\text {out }} 11$
$1 / \Delta x$ in 11

Matrices Transformations (3D Graphics version)

- General

$$
\left[\begin{array}{llll}
d & e & f & a \\
g & h & i & b \\
j & k & l & c \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
d x+e y+f z+a \\
g x+h y+i z+b \\
j x+k y+l z+c \\
1
\end{array}\right]
$$

- Translation

$$
\left[\begin{array}{llll}
1 & & & a \\
& 1 & & b \\
& & 1 & c \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+a \\
y+b \\
z+c \\
1
\end{array}\right]
$$

3-D Coordinates

- Points represented by 4 -vectors
- Need to decide orientation of coordinate axes

Scale

Uniform Scale $a=b=c=1 / 4$
$\left[\begin{array}{llll}a & & & \\ & b & & \\ & & c & \\ & & & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]=\left[\begin{array}{c}a x \\ b y \\ c z \\ 1\end{array}\right]$

> Stretch

$a=b=1, c=\quad a=b=1, c=$

Project
Invert
Squash
$a=b=1, c=$
$1 / 4$
$a=b=1, c=$
0

3-D Rotations

\square About x-axis

- rotates $y \rightarrow z$
$\left[\begin{array}{llll}1 & & & \\ & \cos \theta & -\sin \theta & \\ & \sin \theta & \cos \theta & \\ & & & 1\end{array}\right]$
- About y-axis
\square rotates $z \rightarrow x$
$\left[\begin{array}{cccc}\cos \theta & & \sin \theta & \\ & 1 & & \\ -\sin \theta & & \cos \theta & \\ & & & 1\end{array}\right]$

About z-axis
\square rotates $x \rightarrow y$$\left[\begin{array}{cccc}\cos \theta & -\sin \theta & & \\ \sin \theta & \cos \theta & & \\ & & 1 & \\ & & & 1\end{array}\right]$

- Rotations do not commute!

Norms of Linear Functions

- What is a linear function?

$$
f\left(x_{1}, \ldots, x_{k}\right)=b+a_{1} x_{1}+\ldots+a_{k} x_{k}
$$

- ... a hyperplane in dimension k
- We can define the norm of a linear function as

$$
\|f\|=\max \frac{\|f(x)\|}{\|x\|}
$$

With $x \neq 0$ (Why?)

- This is like a maximum amplification factor

Matrix Norm

- We'll define a matrix norm to be the max possible stretching a matrix can perform on a vector....

$$
\|A\|=\max \|A x\| \text { for all } x \text { with }\|x\|=1
$$

Matrix Norms

$$
\begin{aligned}
\|A\|_{p} & =\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \\
\|A\|_{1} & =\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
\|A\|_{\infty} & =\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Matrix norms are defined in terms of an underlying vector norm

In general matrix p-norms are complicated to compute but a couple of them are easy...

What is the 1 -norm computing?
What is the inf-norm computing?

Matrix Norms - Example

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 1 \\
3 & -1 & 4
\end{array}\right] \\
\|A\|_{1}=6 \\
\|A\|_{\infty}=0
\end{gathered}
$$

Solving Linear Systems and Error

Solving Linear Systems and Error

$$
\begin{aligned}
& \left.\frac{\Delta x}{x} / \frac{\Delta b}{b}=\frac{\|\Delta x\|}{\|x\|} / \frac{\|\Delta b\|}{\|b\|} \leq\|A\|\left\|A^{-1}\right\| l \right\rvert\, l b \| l \\
& \operatorname{since} A x=b \\
& =\frac{11 A+1}{11 \times 11} \\
& \frac{\|\Delta x\|}{\|\Delta 6\|} \\
& \frac{4 A^{-1} D b \|}{\|\Delta b\|}
\end{aligned}
$$

