CS 357: Numerical Methods

Lecture 5: Condition Number
 Gaussian Elimination Review

Eric Shaffer

Measuring Error

- Norms measure distance between vectors
\square The distance between v1 and v2 is $\|v 1 \quad v 2\|$
- Imagine we have an approximation x_{0} to some true value x So... $x=x_{0}+\Delta x$
\square The absolute error is Δx
- ...for vectors we could use $\|\Delta x\|$
- Can this tell us if an answer is good?

The Last Two Lectures in 3 Slides

- We want to solve $A x=b$ for x
- We know there will be some error...the solution will be approximate
- There will be input error in the b vector
- Give an example....
- We want to know how much the solving method amplifies that error

The Last Two Lectures in 3 Slides

- We need to measure error
- Define relative error $\left\|x-x_{0}\right\| /\|x\|$
- What is x ? What is x_{0} ?
\square Need a magnitude measure for vectors
- Define a vector norm so we can compute \|x\|
\square Define a matrix norm $\|A\|=\max \|A x\|$ for all x with $\|x\|=1$
- Upper bound on how much a matrix can stretch a vector
- Define condition number as the ratio of output error to input error

The Last 2 Lectures in 3 Slides

- We want solve $A x=b$ for x
- How much does the algorithm amplify error?

$$
A(x+\Delta x)=(b+\Delta b)
$$

$\frac{\|\Delta x\|}{\|x\|} / \frac{\|\Delta b\|}{\|b\|} \leq\|A\|\left\|A^{-1}\right\|$

What about matrix multiplication

$$
\begin{aligned}
& \text { It's an algorithm... } \\
& A x^{<\prime}=b^{\text {input }} \\
& \text { It has an input (with error) and an output } \\
& \text { - What's the condition number of matrix multiplication inst } \\
& A(x+\Delta x)=(b+\Delta b) \\
& \text { Let } B=A^{-1} \longrightarrow \quad x=B b \text { or } \frac{B b=x}{b_{\text {wundt }}} \\
& \frac{\|म b\| /\|b\|}{\frac{\|\lambda \times 1\|}{\|x\|}} \leq\|B\|\left\|B^{-1}\right\|=\left\|A^{-1}\right\| A A^{\text {sound }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { rel } v}{\text { rel }} \leq C \\
& \frac{\text { rely }}{-1} \leq 20 \\
& \text { rely } \leq 2
\end{aligned}
$$

Matrix Norms

$$
\begin{aligned}
\|A\|_{p} & =\max _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}} \\
\|A\|_{1} & =\max _{1 \leqslant j \leqslant n} \sum_{i=1}^{m}\left|a_{i j}\right| \\
\|A\|_{\infty} & =\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Matrix norms are defined in terms of an underlying vector norm

In general matrix p-norms are complicated to compute but a couple of them are easy...

What is the 1 -norm computing?
What is the inf-norm computing?

Some useful facts and definitions

- A matrix is A is invertible if there is matrix A^{-1} such that $A A^{-1}=1$
- Non-singular means invertible
- $(A B)^{\top}=B^{\top} A^{\top}$
- ($A B)^{-1=B^{-1} A^{-1}}$
- ($\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}$

Let's look at an example of solving a system

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]: A
$$

$$
\begin{array}{ll}
2 u+v+w=5 & b=[\\
4 u-6 v=-2 \\
-2 u+7 v+2 w=9
\end{array} \quad\left[\begin{array}{r}
S \\
-2 \\
9
\end{array}\right]
$$

Think in terms of $A x=b$
What is A?
What is b ?

$$
x=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

What is x ?

Let's look at an example of solving a system

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Let's think in terms of column vectors.
Write b as a linear combination of column vectors of A.

$$
u\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right]+v\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right]+w\left[\begin{array}{c}
1 \\
0 \\
2
\end{array}\right]=b
$$

Let's look at an example of solving a system

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Let's think in terms of geometry.
Each equation is a plane.
What is a solution to the system?
A unique sole is a point

Let's look at an example of solving a system

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Let's think in terms of geometry.
What are some ways the planes could be arranged so that there are no solutions?

Let's look at an example of solving a system

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Let's think in terms of geometry.
What are some ways the planes could be arranged so that there are an infinite number of solutions solutions?

Let's solve using Gaussian Elimination

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9 \\
& \begin{array}{ccccccccc}
2 & 1 & 1 & 5 & \left(-2 r_{1}+r_{2}\right) & 2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 & & & 0 & -8 & -2
\end{array}-12 \\
& \rightarrow r_{2}+r_{3} \quad \begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

Let's solve using Gaussian Elimination

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Backward Substitutio

$$
\begin{array}{cccc}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}
$$

(1) $\omega=2$
(2) $-8 v=-12+4{ }^{*} 2(-2)$

$$
v=T
$$

(3) $2 u=5-2-1=2$

$$
u=1
$$

Let's solve using Gaussian Elimination

$$
\begin{aligned}
& 2 u+v+w=5 \\
& 4 u-6 v=-2 \\
& -2 u+7 v+2 w=9
\end{aligned}
$$

Computational Cost
$n \times n$ matrix
How many operations does it take to get a triangular matrix?
1 operation = a division or a multipliationt
Eliminating o 's in first column for $\underline{n}-1$ rows below vow 1 wa do n mult/scbs $n(n-1) \rightarrow o\left(n^{2}\right)$ already y

$$
\begin{aligned}
& \text { over } \\
& \text { all } \\
& \text { columns }
\end{aligned}\left\{\sum_{x=1}^{n} k(k-1)=\frac{n^{3}-n}{3}=O\left(n^{3}\right)\right.
$$

Computational Cost

How many operations does it take to do backward substitution?

Semi-random interesting linear algebra application

Instancing for complex scenes in computer graphics
We've seen that matrices can transform points (rotation, scaling, and translation)
https://www.youtube.com watch? v=bvNtu9SGC9g
https://www.youtube.com /watch? $\mathrm{v}=\mathrm{ANj} 3$ rvkKHAM

