CS 357: Numerical Methods

Lecture 4: LU Decomposition

Eric Shaffer

A Quick Word Solving Linear Systems

If A^{-1} exists then

$$Ax = b \implies x = A^{-1}b$$

but

Do not compute the solution to Ax = b by finding A^{-1} , and then multiplying b by A^{-1} !

We see:
$$x = A^{-1}b$$

We do: Solve Ax = b by Gaussian elimination or an equivalent algorithm

Triangular Matrices

The generic lower and upper triangular matrices are

$$L = \begin{bmatrix} l_{11} & 0 & \cdots & 0 \\ l_{21} & l_{22} & & 0 \\ \vdots & & \ddots & \vdots \\ l_{n1} & & \cdots & l_{nn} \end{bmatrix}$$

and

$$U = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & & u_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & u_{nn} \end{bmatrix}$$

The triangular systems

$$Ly = b$$
 $Ux = c$

are easily solved by forward substitution and backward substitution, respectively

Solving Triangular Systems

Solving for $x_1, x_2, ..., x_n$ for a lower triangular system is called **forward** substitution.

```
given L, b
1
    x_1 = b_1 / \ell_{11}
2
    for i = 2...n
3
  s = b_i
4
   for j = 1 ... i - 1
5
    s = s - \ell_{i,j} x_j
6
        end
7
        x_i = s/\ell_{i,i}
8
     end
9
```

Using forward or backward substitution is sometimes referred to as performing a triangular solve.

Row Echelon Form

- Gaussian Elimination transforms A into row echelon form
- Example

 2
 4
 1
 5
 7
 10
 11

 3
 7
 9
 1
 5
 5

 4
 5
 8
 9

 7
 4
 3
- How is this different from Upper Triangular?
- Can we successfully solve the above system using GE?

Row Echelon Form

- All nonzero rows are above any rows of all zeroes
- The leading coefficient of a nonzero row is always to the right of the leading coefficient of the row above
- So...there can be zeroes on and above the diagonal
- Note that in REF that every row is linear combo of the original rows.

Ax=b_i

Do we need to do full Gaussian Elimination for each new b_i?

Ax=b_i

Do we need to do full Gaussian Elimination for each new b_i?

No...we can perform GE on A to factor it into A=LU

How does this let us save work?

- Suppose we are given A=LU
- So LUx=b
- \square We can solve Ly = b
- How? How much work for an nxn matrix L?
- We can then solve Ux=y
- How? How much work for an nxn matrix L?

- So, how do we find factor A into LU?
- Given A, we can generally find an upper triangular matrix
 - Through Gaussian Elimination (GE)
- How do we find L?
 - We can find it if we keep track of what we do in GE
 - We use matrix multiplication to do the elimination....
 - …Elimination Matrices

Elimination Matrices

• Annihilate entries below k^{th} element in *a* by a transformation:

$$M_{k}a = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & -m_{k+1} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -m_{n} & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $m_i = a_i / a_k$, i = k + 1, ..., n.

• The divisor *a_k* is the "pivot" (and needs to be nonzero)

Elimination Matrices

- Matrix M_k is an "elementary elimination matrix": adds a multiple of row k to each subsequent row, with "multipliers" m_i so that the result is zero in the kth column for rows i > k.
- *M_k* is unit lower triangular and nonsingular
- $M_k = I m_k e_k^T$ where $m_k = [0, ..., 0, m_{k+1}, ..., m_n]^T$ and e_k is the k^{th} column of the identity matrix I.
- $M_k^{-1} = I + m_k e_k^T$, which means M_k^{-1} is also lower triangular, and we will denote $M_k^{-1} = L_k$.

Can you prove $M_k^{-1} = I + m_k e_k^T$?

Example

Let
$$a = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$$
.

and

$$M_{1}a = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$
$$M_{2}a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$$

Example

So

$$L_1 = M_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \ L_2 = M_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

which means

$$M_1M_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1/2 & 1 \end{bmatrix}, \ L_1L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1/2 & 1 \end{bmatrix}$$

Gaussian Elimination with Elementary Elimination Matrices

- To reduce Ax = b to upper triangular form, first construct M_1 with a_{11} as the pivot (eliminating the first column of A below the diagonal.
- Then $M_1Ax = M_1b$ still has the same solution.
- Next construct M₂ with pivot a₂₂ to eliminate the second column below the diagonal.
- Then $M_2M_1Ax = M_2M_1b$ still has the same solution
- $M_{n-1}\ldots M_1Ax = M_{n-1}\ldots M_1b$
- Let $M = M_n M_{n-1} \dots M_1$; then MAx = Mb, with MA upper triangular. Then back solve.

Another Way to Look at A

We've mentioned *L* and *U* today. Why? Consider this

$$A = A$$

$$A = (M^{-1}M)A$$

$$A = (M_1^{-1}M_2^{-1}\dots M_n^{-1})(M_nM_{n-1}\dots M_1)A$$

$$A = (M_1^{-1}M_2^{-1}\dots M_n^{-1})((M_nM_{n-1}\dots M_1)A)$$

But *MA* is upper triangular, and we've seen that $M_1^{-1} \dots M_n^{-1}$ is lower triangular. Thus, we have an algorithm that factors *A* into two matrices *L* and *U*.