CS 357: Numerical Methods

Lecture 4: LU Decomposition

Eric Shaffer

A Quick Word Solving Linear Systems

If A^{-1} exists then

$$
A x=b \quad \Longrightarrow \quad x=A^{-1} b
$$

but
Do not compute the solution to $A x=b$ by finding A^{-1}, and then multiplying b by A^{-1} !

We see: $\quad x=A^{-1} b$
We do: Solve $A x=b$ by Gaussian elimination or an equivalent algorithm

Triangular Matrices

The generic lower and upper triangular matrices are

$$
L=\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & & 0 \\
\vdots & & \ddots & \vdots \\
l_{n 1} & & \cdots & l_{n n}
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & u_{n n}
\end{array}\right]
$$

The triangular systems

$$
L y=b \quad U x=c
$$

are easily solved by forward substitution and backward substitution, respectively

Solving Triangular Systems

Solving for $x_{1}, x_{2}, \ldots, x_{n}$ for a lower triangular system is called forward substitution.

```
given L, b
x}=\mp@subsup{b}{1}{}/\mp@subsup{l}{11}{
for i=2\ldotsn
    s=\mp@subsup{b}{i}{}
    for j=1\ldotsi-1
        s=s-\ell li,j}\mp@subsup{x}{j}{
    end
    xi}=s/\mp@subsup{\ell}{i,i}{
end
```

Using forward or backward substitution is sometimes referred to as performing a triangular solve.

Row Echelon Form

- Gaussian Elimination transforms A into row echelon form
- Example
$\left[\begin{array}{ccccccc}2 & 4 & 1 & 5 & 7 & 10 & 11 \\ & 3 & 7 & 9 & 1 & 5 & 5 \\ & & & & 5 & 8 & 9 \\ & & & & & 7 & 4 \\ & & & & & & 3\end{array}\right]$
- How is this different from Upper Triangular?
- Can we successfully solve the above system using GE?

Row Echelon Form

- All nonzero rows are above any rows of all zeroes
- The leading coefficient of a nonzero row is always to the right of the leading coefficient of the row above
- So...there can be zeroes on and above the diagonal
- Note that in REF that every row is linear combo of the original rows.

Imagine a world with a lot of b's

- $A x=b_{i}$
- Do we need to do full Gaussian Elimination for each new b_{i} ?

Imagine a world with a lot of b's

ㅁ $A x=b_{i}$

- Do we need to do full Gaussian Elimination for each new b_{i} ?
- No... we can perform GE on A to factor it into $A=L U$
- How does this let us save work?

Imagine a world with a lot of b's

- Suppose we are given $A=L U$
- So LUx=b
- We can solve Ly = b
- How? How much work for an nxn matrix L?
- We can then solve Ux=y
- How? How much work for an nxn matrix L?

Imagine a world with a lot of b's

\square So, how do we find factor A into LU?

- Given A, we can generally find an upper triangular matrix
- Through Gaussian Elimination (GE)
- How do we find L?
- We can find it if we keep track of what we do in GE
\square We use matrix multiplication to do the elimination....
- ...Elimination Matrices

Elimination Matrices

- Annihilate entries below $k^{\text {th }}$ element in a by a transformation:

$$
M_{k} a=\left[\begin{array}{cccccc}
1 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0 & \ldots & 0 \\
0 & \ldots & -m_{k+1} & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & -m_{n} & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=k+1, \ldots, n$.

- The divisor a_{k} is the "pivot" (and needs to be nonzero)

Elimination Matrices

- Matrix M_{k} is an "elementary elimination matrix": adds a multiple of row k to each subsequent row, with "multipliers" m_{i} so that the result is zero in the $k^{\text {th }}$ column for rows $i>k$.
- M_{k} is unit lower triangular and nonsingular
- $M_{k}=I-m_{k} e_{k}^{T}$ where $m_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and e_{k} is the $k^{t h}$ column of the identity matrix I.
- $M_{k}^{-1}=I+m_{k} e_{k}^{T}$, which means M_{k}^{-1} is also lower triangular, and we will denote $M_{k}^{-1}=L_{k}$.

Can you prove $M_{k}^{-1}=I+m_{k} e_{k}^{T}$?

Example

Let $a=\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right]$.

$$
M_{1} a=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

and

$$
M_{2} a=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

Example

So

$$
L_{1}=M_{1}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], L_{2}=M_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

which means

$$
M_{1} M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 / 2 & 1
\end{array}\right], L_{1} L_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 / 2 & 1
\end{array}\right]
$$

Gaussian Elimination with Elementary Elimination Matrices

- To reduce $A x=b$ to upper triangular form, first construct M_{1} with a_{11} as the pivot (eliminating the first column of A below the diagonal.
- Then $M_{1} A x=M_{1} b$ still has the same solution.
- Next construct M_{2} with pivot a_{22} to eliminate the second column below the diagonal.
- Then $M_{2} M_{1} A x=M_{2} M_{1} b$ still has the same solution
- $M_{n-1} \ldots M_{1} A x=M_{n-1} \ldots M_{1} b$
- Let $M=M_{n} M_{n-1} \ldots M_{1}$; then $M A x=M b$, with $M A$ upper triangular. Then back solve.

Another Way to Look at A

We've mentioned L and U today. Why?
Consider this

$$
\begin{aligned}
& A=A \\
& A=\left(M^{-1} M\right) A \\
& A=\left(M_{1}^{-1} M_{2}^{-1} \ldots M_{n}^{-1}\right)\left(M_{n} M_{n-1} \ldots M_{1}\right) A \\
& A=\left(M_{1}^{-1} M_{2}^{-1} \ldots M_{n}^{-1}\right)\left(\left(M_{n} M_{n-1} \ldots M_{1}\right) A\right)
\end{aligned}
$$

But $M A$ is upper triangular, and we've seen that $M_{1}^{-1} \ldots M_{n}^{-1}$ is lower triangular. Thus, we have an algorithm that factors A into two matrices L and U.

