CS 357: Numerical Methods

Lecture 7: LU Applications

Eric Shaffer

Decomposing into PA=LU

You try it...

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 3 \\
2 & 5 & 8
\end{array}\right]} \\
& P_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
-4 / 2 & 0 & 1
\end{array}\right] \\
& m, p, A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
0 & -3 / 2 & -1 \\
0 & -3 / 2 & -3
\end{array}\right]
\end{aligned}
$$

PA=LU Example

$$
\begin{aligned}
& P_{2}=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad P A=L O \\
& m_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \\
& U=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 3 & 6 \\
0 & 0 & 2
\end{array}\right] \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

PA=LU Example

PA=LU Example

Can LU Fail?

- What happens if the largest below-diagonal value is 0 ?

That means the column is already upper-triangular

Pivoted LU Cannot Fail

- You will end up with U in row echelon form

- Which is technically upper triangular

LU on a Singular Matrix

- We still get PA=LU
- P must be invertible (why?)

$$
P_{i n}^{-1}=P_{i}
$$

- L must be invertible (why?)

- ...means that U must be singular

LU on a Singular Matrix

- All the non-zero rows of U are linearly independent
- Why?
reading O's
- So what must U look like?

$$
\begin{aligned}
& \text { zero rows on } \\
& \text { lootron }
\end{aligned}
$$

What about LU on non-square matrices?

- For an mxn matrix there are four cases based on
- Is $M>N$?
- Is the decomposition into one of the following:
- An mxm times an mxn
- An mxn times an nxn

What about LU on non-square matrices?

What about LU on non-square matrices?

Full versus Reduced LU

- The reduced version requires less space
\square Doesn't include zero rows in U
- Doesn't include columns that will be zeroed out in L
- Usually what software will produce...
- Quick quiz question: is LU factorization unique?

No

Applications of LU:
 Solving Systems of Linear Equations

- $A x=b$
- PA=LU
- $P A x=P b$
- LUx=Pb
- What comes next?

$$
\begin{aligned}
& \text { Solve }=P b \\
& \text { Ly }=u x=y \\
& \text { foin }
\end{aligned}
$$

Solving Matrix Equations

- $A X=B$
- A, X, B are square and same size
- Example:
$\left[\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- Factor A $O\left(n^{3}\right)$
- Then solve for X column by column....
- Computational cost is: n forward subs

$$
\rightarrow n O\binom{n}{n} \rightarrow O\left(n^{3}\right)
$$

Find the Basis of a Span

- Suppose we are given n possibly linearly dependent vectors
- x $1, x 2, \times 3, \ldots, x n$

ㄴ Let V be the space spanned by the xi
\square A Span is the set of linear combinations of a set of vectors

- A set of linearly independent vectors spanning V is a Basis

Non-zero rows of U form a Basis
Obtain $\quad P A=L U$

Compute a Determinant

- Find $\operatorname{det}(A)$
- If we have PA=LU
- $\operatorname{det}(\mathrm{p}) \operatorname{det}(\mathrm{A})=\operatorname{det}(\mathrm{L}) \operatorname{det}(\mathrm{U})$
$\rightarrow \operatorname{det}(P) \operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)$

1 product of diagonal entries

Find the Rank of a Matrix

- The rank of a matrix is the number of linearly independent columns (or rows)
- Testing two vectors for linear dependence on a computer is fraught with peril

Find the Rank of a Matrix

Suppose we would like to test two inexact vectors for
linear dependence.

Lesson:
We cannot hope for exact equality on a computer. Instead, we must define some sort of tolerance.

Find the Rank of a Matrix

- Taking that into account we can...
- Use LU factorization
- In exact arithmetic rank-deficiency will generate 0 rows in U
- Use some tolerance since we wont get exact zeros

