CS 357: Numerical Methods

Lecture 9: Orthgonanlity

Eric Shaffer

Some slides adapted from Linear Algebra by David C. Lay

Rank Finding

- Find $A=L U$
- Find rank of A by looking at number of non-zero rows in U
- Does not work for pivoted LU: PA=LU!
- If you need to pivot you'll need to do something else
- You can compute an echelon factorization $A=M^{-1} U$
- See demo "LU and upper echelon form"

Finding the Nullspace of A

- The Nullspace of A:
is the set of vectors x such that $A x=0$
- Note that if $A x=b$ and $A s=0$ that $A(x+s)=b$
- Does the Nullspace always exist?

At least trivially...

$$
x=0
$$

$M=\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)$

Let M be the matrix for the linear mapping T (ie: $T \bar{x}=M \bar{x} \quad$)

Note: $\begin{gathered}\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)\left(\begin{array}{c}2 \\ 1 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \\ \text { This vector is in the null space of } T\end{gathered}$

The vectors in the null space are the solutions to $M \bar{x}=\overline{0}$
$M=\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)$

Let M be the matrix for the linear mapping T (ie: $T \bar{x}=M \bar{x} \quad$)

To find a basis for the null space of T you must solve:
$\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$M=\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)$

Let M be the matrix for the linear mapping T (ie: $T \bar{x}=M \bar{x} \quad$)

To find a basis for the null space of T you must solve:
$\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
$\left(\begin{array}{llll:l}2 & 1 & 3 & 1 & 0 \\ 1 & 1 & 2 & 1 & 0 \\ 3 & 2 & 5 & 2 & 0\end{array}\right)$ reduces to $\left(\begin{array}{llll:l}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
$M=\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)$

Let M be the matrix for the linear mapping T (ie: $T \bar{x}=M \bar{x} \quad$)

To find a basis for the null space of T you must solve:
$\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
M=\left(\begin{array}{llll}
2 & 1 & 3 & 1 \\
1 & 1 & 2 & 1 \\
3 & 2 & 5 & 2
\end{array}\right)
$$

Let M be the matrix for the linear mapping T

To find a basis for the null space of T you must solve:

$$
\begin{aligned}
& \left(\begin{array}{llll}
2 & 1 & 3 & 1 \\
1 & 1 & 2 & 1 \\
3 & 2 & 5 & 2
\end{array}\right)\left(\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{llll:l}
2 & 1 & 3 & 1 & 0 \\
1 & 1 & 2 & 1 & 0 \\
3 & 2 & 5 & 2 & 0
\end{array}\right) \text { reduces to }\left(\begin{array}{cccc:c}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
w=-1 y \\
x=\begin{array}{cc}
x & -1 y \\
y & -1 z \\
z & =
\end{array}
\end{array}>\begin{array}{l}
1 y
\end{array}
\end{aligned}
$$

Every vector in the null space looks like: $\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=y\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 1\end{array}\right)$
$M=\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)$

Let M be the matrix for the linear mapping T

To find a basis for the null space of T you must solve:
$\left(\begin{array}{llll}2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 3 & 2 & 5 & 2\end{array}\right)\left(\begin{array}{l}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Finding the Nullspace of A

- Andreas will go over this in more detail Tuesday

Inner Products

- Dot product is an example
$\square v \cdot w=\sum v_{i} w_{i}$
- A function f with two vector arguments With the following properties

$$
\begin{aligned}
& f(\alpha x, y)=\alpha f(x, y) \\
& f(x+y, z)=f(x, z)+f(y, z) \\
& f(x, y)=f(y, x) \\
& f(x, x) \geq 0 \\
& f(x, x)=0 \leftrightarrow x=0
\end{aligned}
$$

Dot Product Applications

- Can be used to measure difference between vectors
- distance

$$
\operatorname{dist}_{2}(w, v)=\sqrt{\left(\begin{array}{ll}
w & v
\end{array}\right) \times\left(\begin{array}{ll}
w & v
\end{array}\right)}
$$

\square angle $v \times w=\|v\|\|w\| \cos$

- ...so lots of applications

Orthogonality

- Two vectors x and y are orthogonal if $x \cdot y=0$
- We say x is perpendicular to $\mathrm{y}: x \perp y$
- In the case of the dot product, x and y form a 90 degree angle

Computer Graphics: Hidden Surface Removal3D Models are usually meshes of trianglesOn a surface,
a triangle facing away from the viewer need not be renderedWhy?

How can I use an inner product to test if a triangle is backfacing?

$$
\begin{aligned}
& \text { if } \vec{v} \cdot \vec{n} \leq 0 \rightarrow \text { triangle: s back facing } \\
& \text { view direction }
\end{aligned}
$$

Computer Graphics: Hidden Surface Removal

Computer Graphics: Hidden Surface Removal

Challenge: Hidden Surface Removal

- See if you can complete the code so that only forward-facing triangles are drawn....

Challenge: Silhouette Rendering

- How can I draw one the lines that are on the silhouette?

Draw only
edges that
border 1 back face \triangle
and 1
forward 1

