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Optimization Problems

@ Given function f: R™ — R,and set S C R", find z* € S
such that f(z*) < f(x) forallz € S

@ x* is called minimizer or minimum of f

@ It suffices to consider only minimization, since maximum of
f is minimum of — f

@ Objective function f is usually differentiable, and may be
linear or nonlinear

@ Constraint set S is defined by system of equations and
inequalities, which may be linear or nonlinear

@ Points = € S are called feasible points

e If S = R", problem is unconstrained



Optimization Problems

@ General continuous optimization problem:
min f(x) subjectto g(x)=0 and h(x)<0

where f: R* - R, g: R" —R™, h:R" — RP
@ Linear programming: f, g, and h are all linear

@ Nonlinear programming : at least one of f, g, and h is
nonlinear



Newton's Method (for optimization)

@ Another local quadratic approximation is truncated Taylor
series
/()

2
Qh.

flx+h) = f(x)+ f(x)h +

@ By differentiation, minimum of this quadratic function of & is
given by h = —f'(x)/f"(x)

@ Suggests iteration scheme

Try1 = g — f(2k) /" (zk)

which is Newton’s method for solving nonlinear equation
f(x) =0

@ Newton's method for finding minimum normally has
quadratic convergence rate, but must be started close



Newton's Method: Example

@ Use Newton’s method to minimize f(z) = 0.5 — z exp(—x?)
@ First and second derivatives of f are given by
f'(x) = (20 — 1) exp(—a?)

and
f"(z) = 22(3 — 22%) exp(—z?)

@ Newton iteration for zero of f’ is given by
Ty = x — (20 — 1)/ (221,(3 = 27))
@ Using starting guess =g = 1, we obtain

1.000 0.132
0.500 0.111
0.700 0.071

0.707 0.071
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Steepest Descent

@ Let f: R" — R be real-valued function of n real variables

@ At any point  where gradient vector is nonzero, negative
gradient, —V f(x), points downhill toward lower values of f

@ Infact, —V f(x) is locally direction of steepest descent: f
decreases more rapidly along direction of negative
gradient than along any other

@ Steepest descent method: starting from initial guess xy,
successive approximate solutions given by

i1 = T — o Vf(xg)

where «y. is line search parameter that determines how far
to go in given direction



Steepest Descent

@ Given descent direction, such as negative gradient,
determining appropriate value for a;. at each iteration is
one-dimensional minimization problem

néi‘n [z —arVf(xy))

that can be solved by methods already discussed

@ Steepest descent method is very reliable: it can always
make progress provided gradient is nonzero

@ But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very
slow progress toward solution

@ In general, convergence rate of steepest descent is only
linear, with constant factor that can be arbitrarily close to 1



Steepest Descent: Example

@ Use steepest descent method to minimize

f(x) = 0.5z + 2.5x3
1 2

|

@ Performing line search along negative gradient direction,

ncltin f(xo — aoV f(x0))

@ Gradient is given by V f(x) = [‘T’l ]

5:132

=

‘i] we have V f(xg) = [

ot Ot

@ Taking xg = [

exact minimum along line is given by ap = 1/3, so next
3.333}

approximation is x; = [_0 667



Steepest Descent: Example

f(zk) Vf(xy)
5.000 1.000 | 15.000 | 5.000 5.000
3.333  —0.667 6.667 | 3.333 —=3.333
2299 0.444 2.963 | 2222 2299
_‘3 L. .. 1.481 —0.296 1.317 | 1.481 —1.481
0.988 0.198 0.585 | 0.988 0.988
0.658 —0.132 0.260 | 0.658 —0.658
0.439 0.088 0.116 | 0.439 0.439
0.293 —0.059 0.051 | 0.293 —0.293
0.195 0.039 0.023 | 0.195 0.195
0.130 —0.026 0.010 | 0.130 —0.130




Multi-Dimensional Optimization:

Newton’'s Method

@ Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton’s method

@ |In multidimensional optimization, we seek zero of gradient,
so Newton iteration has form

1 = wp — H; ' () V()

where H(x) is Hessian matrix of second partial
derivatives of f,

0° f(z)
{Hf(w)}’?ﬂ o aIaaIJ




Multi-Dimensional Optimization:

Newton’'s Method

@ Do not explicitly invert Hessian matrix, but instead solve
linear system

Hf(a:k)sk. — —Vf(a':k)
for Newton step s;., then take as next iterate
Tp4+1 = Tf + Sk

@ Convergence rate of Newton’s method for minimization is
normally quadratic

@ As usual, Newton’s method is unreliable unless started
close enough to solution to converge



Multi-Dimensional Optimization:

Newton’'s Method

@ Use Newton’s method to minimize
f(x) = 0.527 + 2.523

@ Gradient and Hessian are given by

Vi) = || and @)= | ]

5:132 9]

@ Linear system for Newton step is [é 5] S) = [:;] , SO

=

‘)} , we have V f(x) = [

@ Taking =y = [1

L Sl

[

—5 0 o .
xr1 = T + S0 = H + [_‘i] = H . which is exact solution

for this problem, as expected for quadratic function



Constrained Optimization:Example



First-Order Optimality Condifion

@ For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

@ Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

Vf(z)=0
where V f(x) is gradient vector of f, whose ith component
is Of(x)/0x;

@ For continuously differentiable f: S C R™" — R, any interior
point * of S at which f has local minimum must be critical
point of f

@ But not all critical points are minima: they can also be
maxima or saddle points



Second-Order Optimality Condition

@ For twice continuously differentiable f: S C R" — R, we
can distinguish among critical points by considering
Hessian matrix H ¢(x) defined by

O° f ()
{Hy(x)}ij = 2,07,

which is symmetric

@ At critical point «*, it H¢(x*) is
e positive definite, then x* is minimum of f
@ negative definite, then x* is maximum of f
e indefinite, then x* is saddle point of f
e singular, then various pathological situations are possible



Constrained Optimality

@ If problem is constrained, only feasible directions are
relevant

@ For equality-constrained problem
min f(x) subjectto g(x) =0

where f: R" - Rand g: R" — R, with m < n, necessary
condition for feasible point * to be solution is that negative
gradient of f lie in space spanned by constraint normals,

—Vf(x*) = JgT(:L'*))\

where .J, is Jacobian matrix of g, and A is vector of
Lagrange multipliers

@ This condition says we cannot reduce objective function
without violating constraints



Constrained Optimality

@ Lagrangian function L: R"™ — R, is defined by
Lz, ) = f(x)+ A g(x)
@ lIts gradient is given by

T
V(2 A) = [Vf (“’)QE{Q (w)"}
@ Its Hessian is given by

H(x.\) = [B(“) JT(:E)}

J,(x) O
where .
B(xz.A) = Hy(x) + Z NiHy, (x)
i=1



Constrained Optimality

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

xTr T xTr

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ is saddle point rather than
minimum or maximum

@ Critical point (z*, A*) of £ is constrained minimum of f if
B(x*, A*) is positive definite on null space of J,(x*)

@ If columns of Z form basis for null space, then test
projected Hessian Z1 B Z for positive definiteness
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