CS 357: Numerical Methods

Floating Point

Eric Shaffer

Constrained Optimality

- If problem is constrained, only feasible directions are relevant
- For equality-constrained problem

$$
\underbrace{\min f(\boldsymbol{x})} \text { subject to } \underbrace{\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $m \leq n$, necessary condition for feasible point x^{*} to be solution is that negative gradient of f lie in space spanned by constraint normals,

$$
-\nabla f\left(\boldsymbol{x}^{*}\right)=\underbrace{\boldsymbol{J}_{g}^{T}\left(\boldsymbol{x}^{*}\right) \boldsymbol{\lambda}} \Longleftarrow
$$

where J_{g} is Jacobian matrix of g, and λ is vector of Lagrange multipliers

- This condition says we cannot reduce objective function without violating constraints

Constrained Optimality

- Lagrangian function $\mathcal{L}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$, is defined by

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})
$$

- Its gradient is given by

$$
=\quad=
$$

$$
\nabla \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
\nabla f(\boldsymbol{x})+\boldsymbol{J}_{g}^{T}(\boldsymbol{x}) \boldsymbol{\lambda} \\
\boldsymbol{g}(\boldsymbol{x})
\end{array}\right]
$$

- Its Hessian is given by

$$
\boldsymbol{H}_{\mathcal{L}}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{cc}
\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\lambda}) & \boldsymbol{J}_{g}^{T}(\boldsymbol{x}) \\
\boldsymbol{J}_{g}(\boldsymbol{x}) & O
\end{array}\right]<
$$

where

$$
\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\lambda})=\boldsymbol{H}_{f}(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} \boldsymbol{H}_{g_{i}}(\boldsymbol{x})
$$

Constrained Optimality

- Together, necessary condition and feasibility imply critical point of Lagrangian function,

$$
\nabla \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=\left[\begin{array}{c}
\nabla f(\boldsymbol{x})+\boldsymbol{J}_{g}^{T}(\boldsymbol{x}) \boldsymbol{\lambda} \\
\boldsymbol{g}(\boldsymbol{x})
\end{array}\right]=\mathbf{0}
$$

- Hessian of Lagrangian is symmetric, but not positive definite, so critical point of \mathcal{L} is saddle point rather than minimum or maximum
- Critical point $\left(x^{*}, \boldsymbol{\lambda}^{*}\right)$ of \mathcal{L} is constrained minimum of f if $\boldsymbol{B}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)$ is positive definite on null space of $\boldsymbol{J}_{g}\left(\boldsymbol{x}^{*}\right)$
- If columns of Z form basis for null space, then test projected Hessian $\boldsymbol{Z}^{T} \boldsymbol{B} \boldsymbol{Z}$ for positive definiteness

Sequential Quadratic Programming

- For equality-constrained minimization problem

$$
\min f(\boldsymbol{x}) \text { subject to } \boldsymbol{g}(\boldsymbol{x})=\mathbf{0}
$$

Newton

$$
x_{k+1}=x_{k}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with $m \leq n$, we seek $\quad-H^{-1} \nabla f$ critical point of Lagrangian $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})+\boldsymbol{\lambda}^{T} \boldsymbol{g}(\boldsymbol{x})$

- Applying Newton's meatmen
we obtain linear system

$$
\left[\begin{array}{cc}
\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\lambda}) & \boldsymbol{J}_{g}^{T}(\boldsymbol{x}) \\
\boldsymbol{J}_{g}(\boldsymbol{x}) & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{s} \\
\boldsymbol{\delta}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(\boldsymbol{x})+\boldsymbol{J}_{g}^{T}(\boldsymbol{x}) \boldsymbol{\lambda} \\
\boldsymbol{g}(\boldsymbol{x})
\end{array}\right]
$$

for Newton step $(s, \boldsymbol{\delta})$ in $(\boldsymbol{x}, \boldsymbol{\lambda})$ at each iteration

$$
\nabla \mathcal{L}=\left[\begin{array}{c}
\nabla f \perp \\
g
\end{array}\right]
$$

Constrained Optimization: Example

$$
\begin{aligned}
& f(x, y)=(x-2)^{4}+2(y-1)^{2} \quad g(\lambda, y)=x+4 y-3=0 \\
& \mathcal{L}(x, y, \lambda)=f(x)+\lambda g(x) \\
& \begin{array}{l}
\nabla \mathcal{L}=\left[\begin{array}{l}
4(x-2)^{3}+\lambda \\
4(y-1)+4 \lambda \\
x+4 y-3
\end{array}\right] \& J_{2}=[1,4] \\
H_{2}=\left[\begin{array}{c}
12(x-2)^{2}, 0,1 \\
0,4,4 \\
1,4,0
\end{array}\right]
\end{array}
\end{aligned}
$$

Constrained Optimization: Example

Constrained Optimization: Example

$$
\begin{gathered}
1.54=+\left(1 \times 10^{\circ}+5 \times 10^{-1}+4 \times 10^{-2}\right) \times 10^{\circ} \mathrm{F} \mathrm{~S}_{\text {expreneat }} \\
\text { mantissa }
\end{gathered}
$$

Floating Point Numbers

- Floating-point number system is characterized by four integers

β	base or radix
p	precision
$[L, U]$	exponent range

- Number x is represented as

$$
x= \pm(\underbrace{d_{0}+\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\cdots+\frac{d_{p-1}}{\beta^{p-1}}}) \beta^{E}
$$

where $0 \leq d_{i} \leq \beta-1, i=0, \ldots, p-1$, and $L \leq E \leq U$

Floating Point Numbers

- Portions of floating-poing number designated as follows
- exponent: E
- mantissa: $d_{0} d_{1} \cdots d_{p-1}$
- fraction: $d_{1} d_{2} \cdots d_{p-1}$
- Sign, exponent, and mantissa are stored in separate fixed-width fields of each floating-point word

IEEE 754

Parameters for typical floating-point systems

system	β	p	L	U
IEEE SP	2	24	-126	127
IEEE DP	2	53	-1022	1023

Normalization

- Floating-point system is normalized if leading digit d_{0} is always nonzero unless number represented is zero
- In normalized systems, mantissa m of nonzero floating-point number always satisfies $1 \leq m<\beta$
- Reasons for normalization
- representation of each number unique
- no digits wasted on leading zeros
- leading bit need not be stored (in binary system)

Properties of Floating-Point Systems

- Floating-point number system is finite and discrete
- Total number of normalized floating-point numbers is

$$
2(\beta-1) \beta^{p-1}(U-L+1)+1
$$

- Smallest positive normalized number: $\mathrm{UFL}=\beta^{L}$
- Largest floating-point number: $\mathrm{OFL}=\beta^{U+1}\left(1-\beta^{-p}\right)$
- Floating-point numbers equally spaced only between
gl

worry about this successive powers of β
- Not all real numbers exactly representable; those that are are called machine numbers

Example

$$
\begin{aligned}
& 11.1=3.5 \\
& 11.0=3 \\
& 10.1=2.5 \\
& 10.0=2 \\
& 1.11=13 / 4 \\
& 1.10=1^{1 / 2} \\
& 1.01=1^{1 / 4} \\
& \} 2^{\circ} \\
& 2^{0} \quad d_{0}=\eta \\
& 1.00 \quad 1 \\
& \left.\begin{array}{r}
.111=718 \\
.110=314
\end{array}\right\} 2^{-1} \\
& m=d_{0} d_{1} d_{2} \\
& \text { normalized } \\
& 1 \leq m<2 \\
& 1 \text { signbit } \\
& E=[-1,1]
\end{aligned}
$$

Example

- Tick marks indicate all 25 numbers in floating-point system having $\beta=2, p=3, L=-1$, and $U=1$
- $\mathrm{OFL}=(1.11)_{2} \times 2^{1}=(3.5)_{10}$
- UFL $=(1.00)_{2} \times 2^{-1}=(0.5)_{10}$
- At sufficiently high magnification, all normalized floating-point systems look grainy and unequally spaced

Rounding Rules

- If real number x is not exactly representable, then it is approximated by "nearby" floating-point number $\mathrm{fl}(x)$
- This process is called rounding, and error introduced is called rounding error
- Two commonly used rounding rules
- chop: truncate base- β expansion of x after $(p-1)$ st digit; also called round toward zero
- round to nearest: $\mathrm{f}(x)$ is nearest floating-point number to x, using floating-point number whose last stored digit is even in case of tie; also called round to even
- Round to nearest is most accurate, and is default rounding rule in IEEE systems

Machine Precision

- Accuracy of floating-point system characterized by unit roundoff (or machine precision or machine epsilon) denoted by $\epsilon_{\text {mach }}$
- With rounding by chopping, $\epsilon_{\text {mach }}=\beta^{1-p}$
- With rounding to nearest, $\epsilon_{\text {mach }}=\frac{1}{2} \beta^{1-p}$
 $\mathrm{fl}(1+\epsilon)>1$
- Maximum relative error in representing real number x within range of floating-point system is given by

$$
\left|\frac{\mathrm{fl}(x)-x}{x}\right| \leq \epsilon_{\mathrm{mach}}
$$

Machine Precision

- For toy system illustrated earlier
- $\epsilon_{\text {mach }}=(0.01)_{2}=(0.25)_{10}$ with rounding by chopping
- $\epsilon_{\text {mach }}=(0.001)_{2}=(0.125)_{10}$ with rounding to nearest
- For IEEE floating-point systems
- $\epsilon_{\text {mach }}=2^{-24} \approx 10^{-7}$ in single precision
- $\epsilon_{\text {mach }}=2^{-53} \approx 10^{-16}$ in double precision
- So IEEE single and double precision systems have about 7 and 16 decimal digits of precision, respectively

Machine Precision

- Though both are "small," unit roundoff $\epsilon_{\text {mach }}$ should not be confused with underflow level UFL
- Unit roundoff $\epsilon_{\text {mach }}$ is determined by number of digits in mantissa of floating-point system, whereas underflow level UFL is determined by number of digits in exponent field
- In all practical floating-point systems,

$$
0<\mathrm{UFL}<\epsilon_{\mathrm{mach}}<\mathrm{OFL}
$$

Exceptional Values

- IEEE floating-point standard provides special values to indicate two exceptional situations
- Inf, which stands for "infinity," results from dividing a finite number by zero, such as $1 / 0$
- NaN, which stands for "not a number," results from undefined or indeterminate operations such as $0 / 0,0 * \operatorname{Inf}$, or $\operatorname{Inf} /$ Inf
- Inf and NaN are implemented in IEEE arithmetic through special reserved values of exponent field

Floating-Point Arithmetic

- Addition or subtraction: Shifting of mantissa to make exponents match may cause loss of some digits of smaller number, possibly all of them
- Multiplication: Product of two p-digit mantissas contains up to $2 p$ digits, so result may not be representable
- Division: Quotient of two p-digit mantissas may contain more than p digits, such as nonterminating binary expansion of $1 / 10$
- Result of floating-point arithmetic operation may differ from result of corresponding real arithmetic operation on same operands

Floating-Point Arithmetic

- Real result may also fail to be representable because its exponent is beyond available range

Overflow is usually more serious than underflow because there is no good approximation to arbitrarily large magnitudes in floating-point system, whereas zero is often reasonable approximation for arbitrarily small magnitudes

- On many computer systems overflow is fatal, but an underflow may be silently set to zero

$$
\begin{array}{r}
1.92403 \times 10^{2} \\
-\quad 1.92275 \times 10^{2} \\
\hline 1.28 \times 10^{-1}
\end{array}
$$

Cancellation

- Despite exactness of result, cancellation often implies serious loss of information
- Operands are often uncertain due to rounding or other previous errors, so relative uncertainty in difference may be large
- Example: if ϵ is positive floating-point number slightly smaller than $\epsilon_{\text {mach }}$, then $(1+\epsilon)-(1-\epsilon)=1-1=0$ in floating-point arithmetic, which is correct for actual operands of final subtraction, but true result of overall computation, 2ϵ, has been completely lost
- Subtraction itself is not at fault: it merely signals loss of information that had already occurred

Cancellation

- Subtraction between two p-digit numbers having same sign and similar magnitudes yields result with fewer than p digits, so it is usually exactly representable
- Reason is that leading digits of two numbers cancel (i.e., their difference is zero)
- For example,

$$
1.92403 \times 10^{2}-1.92275 \times 10^{2}=1.28000 \times 10^{-1}
$$

which is correct, and exactly representable, but has only three significant digits

Cancellation

- Digits lost to cancellation are most significant, leading digits, whereas digits lost in rounding are least significant, trailing digits
- Because of this effect, it is generally bad idea to compute any small quantity as difference of large quantities, since rounding error is likely to dominate result
ofor example, summing alternating series, such as

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

for $x<0$, may give disastrous results due to catastrophic cancellation

$$
\begin{align*}
& \begin{array}{l}
1.01 \times 2^{0} \\
1.00 \times 2^{0}
\end{array} \quad\left(d_{0} \times 2^{0}+d_{1} \times 2^{-1} \cdots\right) 2^{\varepsilon} \\
& -\frac{1.00 \times 2^{0}}{0.01=\sqrt{2^{-2}}} \tag{0}\\
& 2^{6} 2^{-1} 2^{-2} \\
& 1 \times 2^{6}+ \\
& 0.10 \times 2 \\
& \begin{array}{ll}
0.11 & \times \\
1.6 & 6
\end{array} \\
& \begin{array}{l}
1.06 \times 2 \\
1.01 \times 2
\end{array} \\
& -1
\end{align*}
$$

Example: Standard Deviation

- Mean and standard deviation of sequence $x_{i}, i=1, \ldots, n$, are given by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { and } \quad \sigma=\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{\frac{1}{2}}
$$

- Mathematically equivalent formula

$$
\sigma=\left[\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)\right]^{\frac{1}{2}}
$$

avoids making two passes through data

- Single cancellation at end of one-pass formula is more damaging numerically than all cancellations in two-pass formula combined

