CS 357: Numerical Methods

Hermite Cubic Interpolation Fourier Basis Radial Basis Functions

Eric Shaffer

Hermite Cubic Interpolation
C_{D} interpolate derivatives as well as values of functions
r
Piecewise polynomial
$4(n-1)$ parameters

$$
-\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}+\alpha_{4} x^{3}
$$

$\sqrt{2}(n-1)$ equations to interpolate function $n-2$ equations from matching $f^{\prime}(x)$
D $3 n-4$
n free parameters

Hermite Cubic Interpolation
How is it different from splines?
Spline has n-1 matching derivatives $@$ knots for degree n polynomial

Cubic
Hermite versus Splines

Hermite

Spline

Review: Interpolation Error
$n=$ degree of poly
If we use a cubic polynomial interpolant on an interval of length h
How much must reduce h to achieve an error bound $1 / 10,000$ less than the original?
function

Review: Interpolation Error

Assume the function f being interpolated is smooth
We use a polynomial of degree n as an interpolant
The length \boldsymbol{h} of the interpolation interval is "sufficiently small" Then we have:

$$
|f(x)-\tilde{f}(x)| \leq C h^{n+1}
$$

Error depends on the interval h (the "step-size")

Choosing Nodes for Interpolation

- Best if nodes cluster towards the ends of the interval
- On $[-1,1]$ the Chebyshev nodes perform best

$$
\begin{aligned}
& \left(\square x_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right) \text { for } \mathrm{k}=1, \ldots, \mathrm{n}\right) \\
& x_{k^{\prime}}=1 / 2(a+b)+1 / 2(b-a) \cos \left(\frac{2 k-1}{2 n} \pi\right) \\
& \underbrace{\cos }_{\text {What about over an arbitrary interval? }(a, b)}) \\
&
\end{aligned}
$$

Choosing Nodes for Interpolation

Chebyshev points are abscissas of points equally spaced around unit circle in \mathbb{R}^{2}

Choosing Nodes for Interpolation

Polynomial interpolants of Runge's function at equally spaced points od not converge

Choosing Nodes for Interpolation

Polynomial interpolants of Runge's function at Chebyshev points do converge

Piecewise Polynomial Interpolation

Review in-class exercise

$$
\left[\begin{array}{cccccc}
1 & x_{0} & x_{0}^{2} & 0 & 0 & 0 \\
1 & x_{1} & x_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{1} & x_{1}^{2} \\
0 & 0 & 0 & 1 & x_{2}^{2} & x_{2}^{2} \\
0 & 1 & 2 x_{1} & 0 & -1 & -2 x_{1} \\
0 & 1 & 2 x_{0} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
0 \\
0
\end{array}\right]
$$

Example

Trigonometric Interpolation

- Trigonometric interpolation uses a sum of sines and cosines as an interpolant
- In modeling periodic or cyclic phenomena, sines and cosines are more appropriate functions than polynomials or piecewise polynomials
- Representation as a linear combination of sines and cosines decomposes continuous function or discrete data into components of various frequencies
- Representation in frequency space may enable more efficient manipulations than in original time or space

Fourier Basis

- A trigonometric polynomial of degree K has the form

$$
\left[\begin{array}{rl}
p(x) & =a_{0}+\sum_{k=1}^{K} a_{k} \cos (k x)+\sum_{k=1}^{K} b_{k} \sin (k x) \\
& =
\end{array}\right.
$$

Fourier Basis

- A trigonometric polynomial of degree K has the form

$$
\begin{gathered}
p(x)=a_{0}+\sum_{k=1}^{K} a_{k} \cos (k x)+\sum_{k=1}^{K} b_{k} \sin (k x) \\
=
\end{gathered}
$$

We wish to find what values?

Fourier Basis

\square The trigonometric polynomial is periodic with period 2π

- The n points should be distributed as:
$\xrightarrow{0 \leq x_{0}<x_{1}<\ldots<x_{n-1}<2 \pi}$
$V x=b r$ function evalid at nodes Vandermonde Matrix with
Fourier Basis
using s nodes $0,2 \pi\left(\frac{1}{s}\right), 2 \pi(2 / 5), 2 \pi(3 / 5), 2 \pi\left(\frac{4}{s}\right)$

$$
\left[\begin{array}{ccc}
\cos (0.0) & \sin (1.0) & \cos (1.0) \\
\cos \left(0 . \frac{2 \pi}{5}\right) & \sin \left(1 . \frac{2 \pi}{5}\right) & \vdots \\
\cos (0.2 \pi(2 / 5)) & \sin (1.2 \pi 2 / 5) & \vdots \\
\cos (0.2 \pi(3 / 5)) & \vdots & \vdots \\
\cos (0.2 \pi(4 / 5) & \vdots & \vdots
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
b_{1} \\
a_{1} \\
b_{2} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{y}
\end{array}\right]
$$

Vandermonde Matrix with Fourier Basis

Radial Basis Functions

- What about higher-dimensional data?
- Example: imagine you have height samples on a surface

Radial Basis Functions

- There are interpolation methods for unstructured data $^{\text {a }}$
- i.e. for data sampled in any pattern
- Radial Basis Functions allow us to interpolate without meshing

Functions are defined in terms of distance from a point

- Hence the the term radial

Radial Basis Functions

Idea: Use multiple copies of the same function, centered at a number of locations on the real line.

- Function of distance from a center
- As distance increases, functions goes to 0

Radial Basis Functions (RBFs)

- Any function dependent on distance from a center is radial
- We can compute an approximate function as a weighted sum..
$\underline{\underline{\phi}}(\underline{x}, \underline{x})=\underbrace{\phi(\|x-p\|)}$
$\mathrm{RBF} \quad f(x) \approx \sum_{i=1}^{N} w_{i} \phi\left(x, p_{i}\right)$

$$
\begin{aligned}
& x=\text { center } \\
& p=\text { some point }
\end{aligned}
$$

- Some popular REFs include
$\phi(r)=e^{-\lambda r^{2}}$
Gaussian

$$
\phi(r)=\frac{1}{1+r^{2}} \underset{ }{<} \text { Inverse distance }
$$

r is a distance

RBFs

$$
\left.\begin{array}{c}
\left.f\left(p_{j}\right)=\sum_{i=1}^{N} \omega_{i} \phi\left(p_{j}\right) p_{i}\right)< \\
{\left[\begin{array}{c}
\phi\left(p_{1}, p_{1}\right) \\
1 \\
\vdots \\
(\\
\ell\left(p_{N}, p_{1}\right)
\end{array} \cdots\left(p_{1}, p_{N}\right)\right.} \\
\vdots\left(p_{N}, p_{N}\right)
\end{array}\right]\left[\begin{array}{c}
\omega_{1} \\
\vdots \\
\omega_{N}
\end{array}\right]=\left[\begin{array}{c}
f\left(p_{1}\right) \\
\vdots \\
\vdots \\
f\left(p_{N}\right)
\end{array}\right] .
$$

Finding coeffiencients

$$
\begin{array}{ll}
f\left(p_{j}\right)=\sum_{i=1}^{N} w_{i} \phi\left(p_{j}, p_{i}\right) & w=\left[\begin{array}{c}
w_{1} \\
A w=p \\
\ldots \\
w_{N}
\end{array}\right] \\
A=\left[\begin{array}{ccc}
\phi\left(p_{1}, p_{1}\right) & \ldots & \phi\left(p_{1,} p_{N}\right) \\
\ldots & \ldots & \ldots \\
\phi\left(p_{N}, p_{1}\right) & \ldots & \phi\left(p_{N}, p_{N}\right)
\end{array}\right] & p=\left[\begin{array}{c}
f\left(p_{1}\right) \\
\ldots \\
f\left(p_{N}\right)
\end{array}\right]
\end{array}
$$

RBFs

- Easy to construct
- Generalizes easily to higher dimensions
- Tricky to stabilize
- Quality of interpolation depends on:
- Choice of basis
- How quickly does it decay?
\square Location of nodes (i.e. scattered data points)
- Interpolant decays with distance from nodes

Example

